from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4334, base_ring=CyclotomicField(196))
M = H._module
chi = DirichletCharacter(H, M([0,121]))
pari: [g,chi] = znchar(Mod(243,4334))
χ4334(45,⋅)
χ4334(67,⋅)
χ4334(89,⋅)
χ4334(111,⋅)
χ4334(199,⋅)
χ4334(243,⋅)
χ4334(397,⋅)
χ4334(485,⋅)
χ4334(573,⋅)
χ4334(639,⋅)
χ4334(771,⋅)
χ4334(793,⋅)
χ4334(815,⋅)
χ4334(859,⋅)
χ4334(903,⋅)
χ4334(947,⋅)
χ4334(1035,⋅)
χ4334(1057,⋅)
χ4334(1079,⋅)
χ4334(1255,⋅)
χ4334(1277,⋅)
χ4334(1299,⋅)
χ4334(1321,⋅)
χ4334(1387,⋅)
χ4334(1409,⋅)
χ4334(1431,⋅)
χ4334(1453,⋅)
χ4334(1497,⋅)
χ4334(1519,⋅)
χ4334(1541,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(1971,199) → (1,e(196121))
a |
−1 | 1 | 3 | 5 | 7 | 9 | 13 | 15 | 17 | 19 | 21 | 23 |
χ4334(243,a) |
−1 | 1 | e(196145) | e(196185) | e(9813) | e(9847) | e(19685) | e(9867) | e(19631) | e(141) | e(196171) | e(494) |