from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4334, base_ring=CyclotomicField(490))
M = H._module
chi = DirichletCharacter(H, M([441,160]))
pari: [g,chi] = znchar(Mod(61,4334))
χ4334(29,⋅)
χ4334(51,⋅)
χ4334(61,⋅)
χ4334(63,⋅)
χ4334(85,⋅)
χ4334(101,⋅)
χ4334(105,⋅)
χ4334(171,⋅)
χ4334(193,⋅)
χ4334(237,⋅)
χ4334(239,⋅)
χ4334(347,⋅)
χ4334(369,⋅)
χ4334(387,⋅)
χ4334(431,⋅)
χ4334(447,⋅)
χ4334(453,⋅)
χ4334(457,⋅)
χ4334(475,⋅)
χ4334(479,⋅)
χ4334(569,⋅)
χ4334(607,⋅)
χ4334(633,⋅)
χ4334(645,⋅)
χ4334(651,⋅)
χ4334(667,⋅)
χ4334(679,⋅)
χ4334(723,⋅)
χ4334(733,⋅)
χ4334(745,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(1971,199) → (e(109),e(4916))
a |
−1 | 1 | 3 | 5 | 7 | 9 | 13 | 15 | 17 | 19 | 21 | 23 |
χ4334(61,a) |
−1 | 1 | e(24574) | e(245162) | e(490477) | e(245148) | e(49031) | e(245236) | e(4909) | e(7069) | e(9827) | e(499) |