Properties

Label 4334.61
Modulus 43344334
Conductor 21672167
Order 490490
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4334, base_ring=CyclotomicField(490))
 
M = H._module
 
chi = DirichletCharacter(H, M([441,160]))
 
pari: [g,chi] = znchar(Mod(61,4334))
 

Basic properties

Modulus: 43344334
Conductor: 21672167
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 490490
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ2167(61,)\chi_{2167}(61,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 4334.bg

χ4334(29,)\chi_{4334}(29,\cdot) χ4334(51,)\chi_{4334}(51,\cdot) χ4334(61,)\chi_{4334}(61,\cdot) χ4334(63,)\chi_{4334}(63,\cdot) χ4334(85,)\chi_{4334}(85,\cdot) χ4334(101,)\chi_{4334}(101,\cdot) χ4334(105,)\chi_{4334}(105,\cdot) χ4334(171,)\chi_{4334}(171,\cdot) χ4334(193,)\chi_{4334}(193,\cdot) χ4334(237,)\chi_{4334}(237,\cdot) χ4334(239,)\chi_{4334}(239,\cdot) χ4334(347,)\chi_{4334}(347,\cdot) χ4334(369,)\chi_{4334}(369,\cdot) χ4334(387,)\chi_{4334}(387,\cdot) χ4334(431,)\chi_{4334}(431,\cdot) χ4334(447,)\chi_{4334}(447,\cdot) χ4334(453,)\chi_{4334}(453,\cdot) χ4334(457,)\chi_{4334}(457,\cdot) χ4334(475,)\chi_{4334}(475,\cdot) χ4334(479,)\chi_{4334}(479,\cdot) χ4334(569,)\chi_{4334}(569,\cdot) χ4334(607,)\chi_{4334}(607,\cdot) χ4334(633,)\chi_{4334}(633,\cdot) χ4334(645,)\chi_{4334}(645,\cdot) χ4334(651,)\chi_{4334}(651,\cdot) χ4334(667,)\chi_{4334}(667,\cdot) χ4334(679,)\chi_{4334}(679,\cdot) χ4334(723,)\chi_{4334}(723,\cdot) χ4334(733,)\chi_{4334}(733,\cdot) χ4334(745,)\chi_{4334}(745,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ245)\Q(\zeta_{245})
Fixed field: Number field defined by a degree 490 polynomial (not computed)

Values on generators

(1971,199)(1971,199)(e(910),e(1649))(e\left(\frac{9}{10}\right),e\left(\frac{16}{49}\right))

First values

aa 1-11133557799131315151717191921212323
χ4334(61,a) \chi_{ 4334 }(61, a) 1-111e(74245)e\left(\frac{74}{245}\right)e(162245)e\left(\frac{162}{245}\right)e(477490)e\left(\frac{477}{490}\right)e(148245)e\left(\frac{148}{245}\right)e(31490)e\left(\frac{31}{490}\right)e(236245)e\left(\frac{236}{245}\right)e(9490)e\left(\frac{9}{490}\right)e(6970)e\left(\frac{69}{70}\right)e(2798)e\left(\frac{27}{98}\right)e(949)e\left(\frac{9}{49}\right)
sage: chi.jacobi_sum(n)
 
χ4334(61,a)   \chi_{ 4334 }(61,a) \; at   a=\;a = e.g. 2