Properties

Label 4334.61
Modulus $4334$
Conductor $2167$
Order $490$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4334, base_ring=CyclotomicField(490))
 
M = H._module
 
chi = DirichletCharacter(H, M([441,160]))
 
pari: [g,chi] = znchar(Mod(61,4334))
 

Basic properties

Modulus: \(4334\)
Conductor: \(2167\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(490\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{2167}(61,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 4334.bg

\(\chi_{4334}(29,\cdot)\) \(\chi_{4334}(51,\cdot)\) \(\chi_{4334}(61,\cdot)\) \(\chi_{4334}(63,\cdot)\) \(\chi_{4334}(85,\cdot)\) \(\chi_{4334}(101,\cdot)\) \(\chi_{4334}(105,\cdot)\) \(\chi_{4334}(171,\cdot)\) \(\chi_{4334}(193,\cdot)\) \(\chi_{4334}(237,\cdot)\) \(\chi_{4334}(239,\cdot)\) \(\chi_{4334}(347,\cdot)\) \(\chi_{4334}(369,\cdot)\) \(\chi_{4334}(387,\cdot)\) \(\chi_{4334}(431,\cdot)\) \(\chi_{4334}(447,\cdot)\) \(\chi_{4334}(453,\cdot)\) \(\chi_{4334}(457,\cdot)\) \(\chi_{4334}(475,\cdot)\) \(\chi_{4334}(479,\cdot)\) \(\chi_{4334}(569,\cdot)\) \(\chi_{4334}(607,\cdot)\) \(\chi_{4334}(633,\cdot)\) \(\chi_{4334}(645,\cdot)\) \(\chi_{4334}(651,\cdot)\) \(\chi_{4334}(667,\cdot)\) \(\chi_{4334}(679,\cdot)\) \(\chi_{4334}(723,\cdot)\) \(\chi_{4334}(733,\cdot)\) \(\chi_{4334}(745,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{245})$
Fixed field: Number field defined by a degree 490 polynomial (not computed)

Values on generators

\((1971,199)\) → \((e\left(\frac{9}{10}\right),e\left(\frac{16}{49}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(13\)\(15\)\(17\)\(19\)\(21\)\(23\)
\( \chi_{ 4334 }(61, a) \) \(-1\)\(1\)\(e\left(\frac{74}{245}\right)\)\(e\left(\frac{162}{245}\right)\)\(e\left(\frac{477}{490}\right)\)\(e\left(\frac{148}{245}\right)\)\(e\left(\frac{31}{490}\right)\)\(e\left(\frac{236}{245}\right)\)\(e\left(\frac{9}{490}\right)\)\(e\left(\frac{69}{70}\right)\)\(e\left(\frac{27}{98}\right)\)\(e\left(\frac{9}{49}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 4334 }(61,a) \;\) at \(\;a = \) e.g. 2