Properties

Label 4368.2027
Modulus 43684368
Conductor 43684368
Order 1212
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4368, base_ring=CyclotomicField(12))
 
M = H._module
 
chi = DirichletCharacter(H, M([6,3,6,8,6]))
 
pari: [g,chi] = znchar(Mod(2027,4368))
 

Basic properties

Modulus: 43684368
Conductor: 43684368
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1212
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 4368.nd

χ4368(779,)\chi_{4368}(779,\cdot) χ4368(2027,)\chi_{4368}(2027,\cdot) χ4368(2963,)\chi_{4368}(2963,\cdot) χ4368(4211,)\chi_{4368}(4211,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ12)\Q(\zeta_{12})
Fixed field: 12.12.174245599581062087533658112.1

Values on generators

(3823,1093,1457,1249,2017)(3823,1093,1457,1249,2017)(1,i,1,e(23),1)(-1,i,-1,e\left(\frac{2}{3}\right),-1)

First values

aa 1-11155111117171919232325252929313137374141
χ4368(2027,a) \chi_{ 4368 }(2027, a) 1111e(712)e\left(\frac{7}{12}\right)e(512)e\left(\frac{5}{12}\right)e(16)e\left(\frac{1}{6}\right)e(112)e\left(\frac{1}{12}\right)e(56)e\left(\frac{5}{6}\right)e(16)e\left(\frac{1}{6}\right)iie(23)e\left(\frac{2}{3}\right)e(112)e\left(\frac{1}{12}\right)1-1
sage: chi.jacobi_sum(n)
 
χ4368(2027,a)   \chi_{ 4368 }(2027,a) \; at   a=\;a = e.g. 2