Properties

Label 4368.nd
Modulus 43684368
Conductor 43684368
Order 1212
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4368, base_ring=CyclotomicField(12))
 
M = H._module
 
chi = DirichletCharacter(H, M([6,3,6,4,6]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(779,4368))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: 43684368
Conductor: 43684368
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1212
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: Q(ζ12)\Q(\zeta_{12})
Fixed field: 12.12.174245599581062087533658112.1

Characters in Galois orbit

Character 1-1 11 55 1111 1717 1919 2323 2525 2929 3131 3737 4141
χ4368(779,)\chi_{4368}(779,\cdot) 11 11 e(1112)e\left(\frac{11}{12}\right) e(112)e\left(\frac{1}{12}\right) e(56)e\left(\frac{5}{6}\right) e(512)e\left(\frac{5}{12}\right) e(16)e\left(\frac{1}{6}\right) e(56)e\left(\frac{5}{6}\right) ii e(13)e\left(\frac{1}{3}\right) e(512)e\left(\frac{5}{12}\right) 1-1
χ4368(2027,)\chi_{4368}(2027,\cdot) 11 11 e(712)e\left(\frac{7}{12}\right) e(512)e\left(\frac{5}{12}\right) e(16)e\left(\frac{1}{6}\right) e(112)e\left(\frac{1}{12}\right) e(56)e\left(\frac{5}{6}\right) e(16)e\left(\frac{1}{6}\right) ii e(23)e\left(\frac{2}{3}\right) e(112)e\left(\frac{1}{12}\right) 1-1
χ4368(2963,)\chi_{4368}(2963,\cdot) 11 11 e(512)e\left(\frac{5}{12}\right) e(712)e\left(\frac{7}{12}\right) e(56)e\left(\frac{5}{6}\right) e(1112)e\left(\frac{11}{12}\right) e(16)e\left(\frac{1}{6}\right) e(56)e\left(\frac{5}{6}\right) i-i e(13)e\left(\frac{1}{3}\right) e(1112)e\left(\frac{11}{12}\right) 1-1
χ4368(4211,)\chi_{4368}(4211,\cdot) 11 11 e(112)e\left(\frac{1}{12}\right) e(1112)e\left(\frac{11}{12}\right) e(16)e\left(\frac{1}{6}\right) e(712)e\left(\frac{7}{12}\right) e(56)e\left(\frac{5}{6}\right) e(16)e\left(\frac{1}{6}\right) i-i e(23)e\left(\frac{2}{3}\right) e(712)e\left(\frac{7}{12}\right) 1-1