from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(43904, base_ring=CyclotomicField(4704))
M = H._module
chi = DirichletCharacter(H, M([0,1029,496]))
pari: [g,chi] = znchar(Mod(45,43904))
χ43904(5,⋅)
χ43904(45,⋅)
χ43904(61,⋅)
χ43904(101,⋅)
χ43904(157,⋅)
χ43904(173,⋅)
χ43904(213,⋅)
χ43904(229,⋅)
χ43904(269,⋅)
χ43904(285,⋅)
χ43904(341,⋅)
χ43904(381,⋅)
χ43904(397,⋅)
χ43904(437,⋅)
χ43904(453,⋅)
χ43904(493,⋅)
χ43904(549,⋅)
χ43904(565,⋅)
χ43904(605,⋅)
χ43904(621,⋅)
χ43904(661,⋅)
χ43904(677,⋅)
χ43904(733,⋅)
χ43904(773,⋅)
χ43904(789,⋅)
χ43904(829,⋅)
χ43904(845,⋅)
χ43904(885,⋅)
χ43904(941,⋅)
χ43904(957,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(17151,9605,17153) → (1,e(327),e(29431))
a |
−1 | 1 | 3 | 5 | 9 | 11 | 13 | 15 | 17 | 19 | 23 | 25 |
χ43904(45,a) |
−1 | 1 | e(47043583) | e(47041301) | e(23521231) | e(47042473) | e(1568521) | e(39215) | e(1176895) | e(9683) | e(2352835) | e(23521301) |