Properties

Label 43904.61
Modulus 4390443904
Conductor 4390443904
Order 47044704
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(43904, base_ring=CyclotomicField(4704))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,2793,4208]))
 
pari: [g,chi] = znchar(Mod(61,43904))
 

Basic properties

Modulus: 4390443904
Conductor: 4390443904
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 47044704
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 43904.fl

χ43904(5,)\chi_{43904}(5,\cdot) χ43904(45,)\chi_{43904}(45,\cdot) χ43904(61,)\chi_{43904}(61,\cdot) χ43904(101,)\chi_{43904}(101,\cdot) χ43904(157,)\chi_{43904}(157,\cdot) χ43904(173,)\chi_{43904}(173,\cdot) χ43904(213,)\chi_{43904}(213,\cdot) χ43904(229,)\chi_{43904}(229,\cdot) χ43904(269,)\chi_{43904}(269,\cdot) χ43904(285,)\chi_{43904}(285,\cdot) χ43904(341,)\chi_{43904}(341,\cdot) χ43904(381,)\chi_{43904}(381,\cdot) χ43904(397,)\chi_{43904}(397,\cdot) χ43904(437,)\chi_{43904}(437,\cdot) χ43904(453,)\chi_{43904}(453,\cdot) χ43904(493,)\chi_{43904}(493,\cdot) χ43904(549,)\chi_{43904}(549,\cdot) χ43904(565,)\chi_{43904}(565,\cdot) χ43904(605,)\chi_{43904}(605,\cdot) χ43904(621,)\chi_{43904}(621,\cdot) χ43904(661,)\chi_{43904}(661,\cdot) χ43904(677,)\chi_{43904}(677,\cdot) χ43904(733,)\chi_{43904}(733,\cdot) χ43904(773,)\chi_{43904}(773,\cdot) χ43904(789,)\chi_{43904}(789,\cdot) χ43904(829,)\chi_{43904}(829,\cdot) χ43904(845,)\chi_{43904}(845,\cdot) χ43904(885,)\chi_{43904}(885,\cdot) χ43904(941,)\chi_{43904}(941,\cdot) χ43904(957,)\chi_{43904}(957,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ4704)\Q(\zeta_{4704})
Fixed field: Number field defined by a degree 4704 polynomial (not computed)

Values on generators

(17151,9605,17153)(17151,9605,17153)(1,e(1932),e(263294))(1,e\left(\frac{19}{32}\right),e\left(\frac{263}{294}\right))

First values

aa 1-1113355991111131315151717191923232525
χ43904(61,a) \chi_{ 43904 }(61, a) 1-111e(31794704)e\left(\frac{3179}{4704}\right)e(25214704)e\left(\frac{2521}{4704}\right)e(8272352)e\left(\frac{827}{2352}\right)e(25254704)e\left(\frac{2525}{4704}\right)e(13411568)e\left(\frac{1341}{1568}\right)e(83392)e\left(\frac{83}{392}\right)e(11631176)e\left(\frac{1163}{1176}\right)e(7996)e\left(\frac{79}{96}\right)e(472352)e\left(\frac{47}{2352}\right)e(1692352)e\left(\frac{169}{2352}\right)
sage: chi.jacobi_sum(n)
 
χ43904(61,a)   \chi_{ 43904 }(61,a) \; at   a=\;a = e.g. 2