from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(43904, base_ring=CyclotomicField(4704))
M = H._module
chi = DirichletCharacter(H, M([0,2793,4208]))
pari: [g,chi] = znchar(Mod(61,43904))
χ43904(5,⋅)
χ43904(45,⋅)
χ43904(61,⋅)
χ43904(101,⋅)
χ43904(157,⋅)
χ43904(173,⋅)
χ43904(213,⋅)
χ43904(229,⋅)
χ43904(269,⋅)
χ43904(285,⋅)
χ43904(341,⋅)
χ43904(381,⋅)
χ43904(397,⋅)
χ43904(437,⋅)
χ43904(453,⋅)
χ43904(493,⋅)
χ43904(549,⋅)
χ43904(565,⋅)
χ43904(605,⋅)
χ43904(621,⋅)
χ43904(661,⋅)
χ43904(677,⋅)
χ43904(733,⋅)
χ43904(773,⋅)
χ43904(789,⋅)
χ43904(829,⋅)
χ43904(845,⋅)
χ43904(885,⋅)
χ43904(941,⋅)
χ43904(957,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(17151,9605,17153) → (1,e(3219),e(294263))
a |
−1 | 1 | 3 | 5 | 9 | 11 | 13 | 15 | 17 | 19 | 23 | 25 |
χ43904(61,a) |
−1 | 1 | e(47043179) | e(47042521) | e(2352827) | e(47042525) | e(15681341) | e(39283) | e(11761163) | e(9679) | e(235247) | e(2352169) |