from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(43904, base_ring=CyclotomicField(4704))
M = H._module
chi = DirichletCharacter(H, M([0,2205,992]))
pari: [g,chi] = znchar(Mod(653,43904))
χ43904(37,⋅)
χ43904(53,⋅)
χ43904(93,⋅)
χ43904(109,⋅)
χ43904(149,⋅)
χ43904(205,⋅)
χ43904(221,⋅)
χ43904(261,⋅)
χ43904(277,⋅)
χ43904(317,⋅)
χ43904(333,⋅)
χ43904(389,⋅)
χ43904(429,⋅)
χ43904(445,⋅)
χ43904(485,⋅)
χ43904(501,⋅)
χ43904(541,⋅)
χ43904(597,⋅)
χ43904(613,⋅)
χ43904(653,⋅)
χ43904(669,⋅)
χ43904(709,⋅)
χ43904(725,⋅)
χ43904(781,⋅)
χ43904(821,⋅)
χ43904(837,⋅)
χ43904(877,⋅)
χ43904(893,⋅)
χ43904(933,⋅)
χ43904(989,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(17151,9605,17153) → (1,e(3215),e(14731))
a |
−1 | 1 | 3 | 5 | 9 | 11 | 13 | 15 | 17 | 19 | 23 | 25 |
χ43904(653,a) |
1 | 1 | e(47042903) | e(47042749) | e(2352551) | e(47043329) | e(1568209) | e(39279) | e(1176467) | e(9643) | e(2352347) | e(2352397) |