Properties

Label 43904.877
Modulus 4390443904
Conductor 4390443904
Order 47044704
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(43904, base_ring=CyclotomicField(4704))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,3381,1472]))
 
pari: [g,chi] = znchar(Mod(877,43904))
 

Basic properties

Modulus: 4390443904
Conductor: 4390443904
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 47044704
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 43904.fn

χ43904(37,)\chi_{43904}(37,\cdot) χ43904(53,)\chi_{43904}(53,\cdot) χ43904(93,)\chi_{43904}(93,\cdot) χ43904(109,)\chi_{43904}(109,\cdot) χ43904(149,)\chi_{43904}(149,\cdot) χ43904(205,)\chi_{43904}(205,\cdot) χ43904(221,)\chi_{43904}(221,\cdot) χ43904(261,)\chi_{43904}(261,\cdot) χ43904(277,)\chi_{43904}(277,\cdot) χ43904(317,)\chi_{43904}(317,\cdot) χ43904(333,)\chi_{43904}(333,\cdot) χ43904(389,)\chi_{43904}(389,\cdot) χ43904(429,)\chi_{43904}(429,\cdot) χ43904(445,)\chi_{43904}(445,\cdot) χ43904(485,)\chi_{43904}(485,\cdot) χ43904(501,)\chi_{43904}(501,\cdot) χ43904(541,)\chi_{43904}(541,\cdot) χ43904(597,)\chi_{43904}(597,\cdot) χ43904(613,)\chi_{43904}(613,\cdot) χ43904(653,)\chi_{43904}(653,\cdot) χ43904(669,)\chi_{43904}(669,\cdot) χ43904(709,)\chi_{43904}(709,\cdot) χ43904(725,)\chi_{43904}(725,\cdot) χ43904(781,)\chi_{43904}(781,\cdot) χ43904(821,)\chi_{43904}(821,\cdot) χ43904(837,)\chi_{43904}(837,\cdot) χ43904(877,)\chi_{43904}(877,\cdot) χ43904(893,)\chi_{43904}(893,\cdot) χ43904(933,)\chi_{43904}(933,\cdot) χ43904(989,)\chi_{43904}(989,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ4704)\Q(\zeta_{4704})
Fixed field: Number field defined by a degree 4704 polynomial (not computed)

Values on generators

(17151,9605,17153)(17151,9605,17153)(1,e(2332),e(46147))(1,e\left(\frac{23}{32}\right),e\left(\frac{46}{147}\right))

First values

aa 1-1113355991111131315151717191923232525
χ43904(877,a) \chi_{ 43904 }(877, a) 1111e(22074704)e\left(\frac{2207}{4704}\right)e(37334704)e\left(\frac{3733}{4704}\right)e(22072352)e\left(\frac{2207}{2352}\right)e(8574704)e\left(\frac{857}{4704}\right)e(15131568)e\left(\frac{1513}{1568}\right)e(103392)e\left(\frac{103}{392}\right)e(11151176)e\left(\frac{1115}{1176}\right)e(1996)e\left(\frac{19}{96}\right)e(8992352)e\left(\frac{899}{2352}\right)e(13812352)e\left(\frac{1381}{2352}\right)
sage: chi.jacobi_sum(n)
 
χ43904(877,a)   \chi_{ 43904 }(877,a) \; at   a=\;a = e.g. 2