Properties

Label 43904.839
Modulus $43904$
Conductor $21952$
Order $784$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(43904, base_ring=CyclotomicField(784))
 
M = H._module
 
chi = DirichletCharacter(H, M([392,637,72]))
 
pari: [g,chi] = znchar(Mod(839,43904))
 

Basic properties

Modulus: \(43904\)
Conductor: \(21952\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(784\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{21952}(21419,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 43904.ew

\(\chi_{43904}(55,\cdot)\) \(\chi_{43904}(167,\cdot)\) \(\chi_{43904}(279,\cdot)\) \(\chi_{43904}(503,\cdot)\) \(\chi_{43904}(615,\cdot)\) \(\chi_{43904}(727,\cdot)\) \(\chi_{43904}(839,\cdot)\) \(\chi_{43904}(951,\cdot)\) \(\chi_{43904}(1063,\cdot)\) \(\chi_{43904}(1287,\cdot)\) \(\chi_{43904}(1399,\cdot)\) \(\chi_{43904}(1511,\cdot)\) \(\chi_{43904}(1623,\cdot)\) \(\chi_{43904}(1735,\cdot)\) \(\chi_{43904}(1847,\cdot)\) \(\chi_{43904}(2071,\cdot)\) \(\chi_{43904}(2183,\cdot)\) \(\chi_{43904}(2295,\cdot)\) \(\chi_{43904}(2407,\cdot)\) \(\chi_{43904}(2519,\cdot)\) \(\chi_{43904}(2631,\cdot)\) \(\chi_{43904}(2855,\cdot)\) \(\chi_{43904}(2967,\cdot)\) \(\chi_{43904}(3079,\cdot)\) \(\chi_{43904}(3191,\cdot)\) \(\chi_{43904}(3303,\cdot)\) \(\chi_{43904}(3415,\cdot)\) \(\chi_{43904}(3639,\cdot)\) \(\chi_{43904}(3751,\cdot)\) \(\chi_{43904}(3863,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{784})$
Fixed field: Number field defined by a degree 784 polynomial (not computed)

Values on generators

\((17151,9605,17153)\) → \((-1,e\left(\frac{13}{16}\right),e\left(\frac{9}{98}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(9\)\(11\)\(13\)\(15\)\(17\)\(19\)\(23\)\(25\)
\( \chi_{ 43904 }(839, a) \) \(1\)\(1\)\(e\left(\frac{23}{784}\right)\)\(e\left(\frac{373}{784}\right)\)\(e\left(\frac{23}{392}\right)\)\(e\left(\frac{521}{784}\right)\)\(e\left(\frac{283}{784}\right)\)\(e\left(\frac{99}{196}\right)\)\(e\left(\frac{9}{196}\right)\)\(e\left(\frac{11}{16}\right)\)\(e\left(\frac{367}{392}\right)\)\(e\left(\frac{373}{392}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 43904 }(839,a) \;\) at \(\;a = \) e.g. 2