Properties

Label 43904.839
Modulus 4390443904
Conductor 2195221952
Order 784784
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(43904, base_ring=CyclotomicField(784))
 
M = H._module
 
chi = DirichletCharacter(H, M([392,637,72]))
 
pari: [g,chi] = znchar(Mod(839,43904))
 

Basic properties

Modulus: 4390443904
Conductor: 2195221952
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 784784
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ21952(21419,)\chi_{21952}(21419,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 43904.ew

χ43904(55,)\chi_{43904}(55,\cdot) χ43904(167,)\chi_{43904}(167,\cdot) χ43904(279,)\chi_{43904}(279,\cdot) χ43904(503,)\chi_{43904}(503,\cdot) χ43904(615,)\chi_{43904}(615,\cdot) χ43904(727,)\chi_{43904}(727,\cdot) χ43904(839,)\chi_{43904}(839,\cdot) χ43904(951,)\chi_{43904}(951,\cdot) χ43904(1063,)\chi_{43904}(1063,\cdot) χ43904(1287,)\chi_{43904}(1287,\cdot) χ43904(1399,)\chi_{43904}(1399,\cdot) χ43904(1511,)\chi_{43904}(1511,\cdot) χ43904(1623,)\chi_{43904}(1623,\cdot) χ43904(1735,)\chi_{43904}(1735,\cdot) χ43904(1847,)\chi_{43904}(1847,\cdot) χ43904(2071,)\chi_{43904}(2071,\cdot) χ43904(2183,)\chi_{43904}(2183,\cdot) χ43904(2295,)\chi_{43904}(2295,\cdot) χ43904(2407,)\chi_{43904}(2407,\cdot) χ43904(2519,)\chi_{43904}(2519,\cdot) χ43904(2631,)\chi_{43904}(2631,\cdot) χ43904(2855,)\chi_{43904}(2855,\cdot) χ43904(2967,)\chi_{43904}(2967,\cdot) χ43904(3079,)\chi_{43904}(3079,\cdot) χ43904(3191,)\chi_{43904}(3191,\cdot) χ43904(3303,)\chi_{43904}(3303,\cdot) χ43904(3415,)\chi_{43904}(3415,\cdot) χ43904(3639,)\chi_{43904}(3639,\cdot) χ43904(3751,)\chi_{43904}(3751,\cdot) χ43904(3863,)\chi_{43904}(3863,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ784)\Q(\zeta_{784})
Fixed field: Number field defined by a degree 784 polynomial (not computed)

Values on generators

(17151,9605,17153)(17151,9605,17153)(1,e(1316),e(998))(-1,e\left(\frac{13}{16}\right),e\left(\frac{9}{98}\right))

First values

aa 1-1113355991111131315151717191923232525
χ43904(839,a) \chi_{ 43904 }(839, a) 1111e(23784)e\left(\frac{23}{784}\right)e(373784)e\left(\frac{373}{784}\right)e(23392)e\left(\frac{23}{392}\right)e(521784)e\left(\frac{521}{784}\right)e(283784)e\left(\frac{283}{784}\right)e(99196)e\left(\frac{99}{196}\right)e(9196)e\left(\frac{9}{196}\right)e(1116)e\left(\frac{11}{16}\right)e(367392)e\left(\frac{367}{392}\right)e(373392)e\left(\frac{373}{392}\right)
sage: chi.jacobi_sum(n)
 
χ43904(839,a)   \chi_{ 43904 }(839,a) \; at   a=\;a = e.g. 2