from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(43904, base_ring=CyclotomicField(784))
M = H._module
chi = DirichletCharacter(H, M([392,637,72]))
pari: [g,chi] = znchar(Mod(839,43904))
χ43904(55,⋅)
χ43904(167,⋅)
χ43904(279,⋅)
χ43904(503,⋅)
χ43904(615,⋅)
χ43904(727,⋅)
χ43904(839,⋅)
χ43904(951,⋅)
χ43904(1063,⋅)
χ43904(1287,⋅)
χ43904(1399,⋅)
χ43904(1511,⋅)
χ43904(1623,⋅)
χ43904(1735,⋅)
χ43904(1847,⋅)
χ43904(2071,⋅)
χ43904(2183,⋅)
χ43904(2295,⋅)
χ43904(2407,⋅)
χ43904(2519,⋅)
χ43904(2631,⋅)
χ43904(2855,⋅)
χ43904(2967,⋅)
χ43904(3079,⋅)
χ43904(3191,⋅)
χ43904(3303,⋅)
χ43904(3415,⋅)
χ43904(3639,⋅)
χ43904(3751,⋅)
χ43904(3863,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(17151,9605,17153) → (−1,e(1613),e(989))
a |
−1 | 1 | 3 | 5 | 9 | 11 | 13 | 15 | 17 | 19 | 23 | 25 |
χ43904(839,a) |
1 | 1 | e(78423) | e(784373) | e(39223) | e(784521) | e(784283) | e(19699) | e(1969) | e(1611) | e(392367) | e(392373) |