Properties

Label 4598.31
Modulus 45984598
Conductor 22992299
Order 330330
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4598, base_ring=CyclotomicField(330))
 
M = H._module
 
chi = DirichletCharacter(H, M([258,275]))
 
pari: [g,chi] = znchar(Mod(31,4598))
 

Basic properties

Modulus: 45984598
Conductor: 22992299
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 330330
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ2299(31,)\chi_{2299}(31,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 4598.bq

χ4598(31,)\chi_{4598}(31,\cdot) χ4598(69,)\chi_{4598}(69,\cdot) χ4598(103,)\chi_{4598}(103,\cdot) χ4598(141,)\chi_{4598}(141,\cdot) χ4598(179,)\chi_{4598}(179,\cdot) χ4598(335,)\chi_{4598}(335,\cdot) χ4598(411,)\chi_{4598}(411,\cdot) χ4598(445,)\chi_{4598}(445,\cdot) χ4598(449,)\chi_{4598}(449,\cdot) χ4598(521,)\chi_{4598}(521,\cdot) χ4598(559,)\chi_{4598}(559,\cdot) χ4598(597,)\chi_{4598}(597,\cdot) χ4598(829,)\chi_{4598}(829,\cdot) χ4598(863,)\chi_{4598}(863,\cdot) χ4598(867,)\chi_{4598}(867,\cdot) χ4598(905,)\chi_{4598}(905,\cdot) χ4598(939,)\chi_{4598}(939,\cdot) χ4598(1015,)\chi_{4598}(1015,\cdot) χ4598(1171,)\chi_{4598}(1171,\cdot) χ4598(1247,)\chi_{4598}(1247,\cdot) χ4598(1281,)\chi_{4598}(1281,\cdot) χ4598(1285,)\chi_{4598}(1285,\cdot) χ4598(1323,)\chi_{4598}(1323,\cdot) χ4598(1357,)\chi_{4598}(1357,\cdot) χ4598(1395,)\chi_{4598}(1395,\cdot) χ4598(1433,)\chi_{4598}(1433,\cdot) χ4598(1589,)\chi_{4598}(1589,\cdot) χ4598(1665,)\chi_{4598}(1665,\cdot) χ4598(1699,)\chi_{4598}(1699,\cdot) χ4598(1741,)\chi_{4598}(1741,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ165)\Q(\zeta_{165})
Fixed field: Number field defined by a degree 330 polynomial (not computed)

Values on generators

(3269,3631)(3269,3631)(e(4355),e(56))(e\left(\frac{43}{55}\right),e\left(\frac{5}{6}\right))

First values

aa 1-11133557799131315151717212123232525
χ4598(31,a) \chi_{ 4598 }(31, a) 1-111e(1930)e\left(\frac{19}{30}\right)e(31165)e\left(\frac{31}{165}\right)e(2655)e\left(\frac{26}{55}\right)e(415)e\left(\frac{4}{15}\right)e(43330)e\left(\frac{43}{330}\right)e(271330)e\left(\frac{271}{330}\right)e(106165)e\left(\frac{106}{165}\right)e(766)e\left(\frac{7}{66}\right)e(1333)e\left(\frac{13}{33}\right)e(62165)e\left(\frac{62}{165}\right)
sage: chi.jacobi_sum(n)
 
χ4598(31,a)   \chi_{ 4598 }(31,a) \; at   a=\;a = e.g. 2