from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4598, base_ring=CyclotomicField(330))
M = H._module
chi = DirichletCharacter(H, M([126,55]))
pari: [g,chi] = znchar(Mod(521,4598))
χ4598(31,⋅)
χ4598(69,⋅)
χ4598(103,⋅)
χ4598(141,⋅)
χ4598(179,⋅)
χ4598(335,⋅)
χ4598(411,⋅)
χ4598(445,⋅)
χ4598(449,⋅)
χ4598(521,⋅)
χ4598(559,⋅)
χ4598(597,⋅)
χ4598(829,⋅)
χ4598(863,⋅)
χ4598(867,⋅)
χ4598(905,⋅)
χ4598(939,⋅)
χ4598(1015,⋅)
χ4598(1171,⋅)
χ4598(1247,⋅)
χ4598(1281,⋅)
χ4598(1285,⋅)
χ4598(1323,⋅)
χ4598(1357,⋅)
χ4598(1395,⋅)
χ4598(1433,⋅)
χ4598(1589,⋅)
χ4598(1665,⋅)
χ4598(1699,⋅)
χ4598(1741,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(3269,3631) → (e(5521),e(61))
a |
−1 | 1 | 3 | 5 | 7 | 9 | 13 | 15 | 17 | 21 | 23 | 25 |
χ4598(521,a) |
−1 | 1 | e(3023) | e(165152) | e(5537) | e(158) | e(330131) | e(330227) | e(16562) | e(6629) | e(332) | e(165139) |