from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(46208, base_ring=CyclotomicField(5472))
M = H._module
chi = DirichletCharacter(H, M([2736,1539,4768]))
pari: [g,chi] = znchar(Mod(283,46208))
χ46208(35,⋅)
χ46208(43,⋅)
χ46208(123,⋅)
χ46208(131,⋅)
χ46208(139,⋅)
χ46208(187,⋅)
χ46208(195,⋅)
χ46208(251,⋅)
χ46208(275,⋅)
χ46208(283,⋅)
χ46208(291,⋅)
χ46208(339,⋅)
χ46208(347,⋅)
χ46208(403,⋅)
χ46208(427,⋅)
χ46208(435,⋅)
χ46208(443,⋅)
χ46208(491,⋅)
χ46208(499,⋅)
χ46208(555,⋅)
χ46208(579,⋅)
χ46208(587,⋅)
χ46208(643,⋅)
χ46208(651,⋅)
χ46208(707,⋅)
χ46208(731,⋅)
χ46208(739,⋅)
χ46208(747,⋅)
χ46208(795,⋅)
χ46208(803,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(28159,36101,14081) → (−1,e(329),e(171149))
a |
−1 | 1 | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 21 | 23 |
χ46208(283,a) |
−1 | 1 | e(54722521) | e(54722371) | e(91213) | e(27362521) | e(1824517) | e(54724877) | e(13681223) | e(13681093) | e(54722599) | e(27361789) |