Properties

Label 46208.643
Modulus 4620846208
Conductor 4620846208
Order 54725472
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(46208, base_ring=CyclotomicField(5472))
 
M = H._module
 
chi = DirichletCharacter(H, M([2736,513,2656]))
 
pari: [g,chi] = znchar(Mod(643,46208))
 

Basic properties

Modulus: 4620846208
Conductor: 4620846208
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 54725472
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 46208.fk

χ46208(35,)\chi_{46208}(35,\cdot) χ46208(43,)\chi_{46208}(43,\cdot) χ46208(123,)\chi_{46208}(123,\cdot) χ46208(131,)\chi_{46208}(131,\cdot) χ46208(139,)\chi_{46208}(139,\cdot) χ46208(187,)\chi_{46208}(187,\cdot) χ46208(195,)\chi_{46208}(195,\cdot) χ46208(251,)\chi_{46208}(251,\cdot) χ46208(275,)\chi_{46208}(275,\cdot) χ46208(283,)\chi_{46208}(283,\cdot) χ46208(291,)\chi_{46208}(291,\cdot) χ46208(339,)\chi_{46208}(339,\cdot) χ46208(347,)\chi_{46208}(347,\cdot) χ46208(403,)\chi_{46208}(403,\cdot) χ46208(427,)\chi_{46208}(427,\cdot) χ46208(435,)\chi_{46208}(435,\cdot) χ46208(443,)\chi_{46208}(443,\cdot) χ46208(491,)\chi_{46208}(491,\cdot) χ46208(499,)\chi_{46208}(499,\cdot) χ46208(555,)\chi_{46208}(555,\cdot) χ46208(579,)\chi_{46208}(579,\cdot) χ46208(587,)\chi_{46208}(587,\cdot) χ46208(643,)\chi_{46208}(643,\cdot) χ46208(651,)\chi_{46208}(651,\cdot) χ46208(707,)\chi_{46208}(707,\cdot) χ46208(731,)\chi_{46208}(731,\cdot) χ46208(739,)\chi_{46208}(739,\cdot) χ46208(747,)\chi_{46208}(747,\cdot) χ46208(795,)\chi_{46208}(795,\cdot) χ46208(803,)\chi_{46208}(803,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ5472)\Q(\zeta_{5472})
Fixed field: Number field defined by a degree 5472 polynomial (not computed)

Values on generators

(28159,36101,14081)(28159,36101,14081)(1,e(332),e(83171))(-1,e\left(\frac{3}{32}\right),e\left(\frac{83}{171}\right))

First values

aa 1-11133557799111113131515171721212323
χ46208(643,a) \chi_{ 46208 }(643, a) 1-111e(13635472)e\left(\frac{1363}{5472}\right)e(38415472)e\left(\frac{3841}{5472}\right)e(223912)e\left(\frac{223}{912}\right)e(13632736)e\left(\frac{1363}{2736}\right)e(17831824)e\left(\frac{1783}{1824}\right)e(5275472)e\left(\frac{527}{5472}\right)e(13011368)e\left(\frac{1301}{1368}\right)e(4391368)e\left(\frac{439}{1368}\right)e(27015472)e\left(\frac{2701}{5472}\right)e(18552736)e\left(\frac{1855}{2736}\right)
sage: chi.jacobi_sum(n)
 
χ46208(643,a)   \chi_{ 46208 }(643,a) \; at   a=\;a = e.g. 2