from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(46208, base_ring=CyclotomicField(5472))
M = H._module
chi = DirichletCharacter(H, M([0,4275,496]))
pari: [g,chi] = znchar(Mod(421,46208))
χ46208(13,⋅)
χ46208(21,⋅)
χ46208(29,⋅)
χ46208(53,⋅)
χ46208(109,⋅)
χ46208(117,⋅)
χ46208(165,⋅)
χ46208(173,⋅)
χ46208(181,⋅)
χ46208(205,⋅)
χ46208(261,⋅)
χ46208(269,⋅)
χ46208(317,⋅)
χ46208(325,⋅)
χ46208(357,⋅)
χ46208(413,⋅)
χ46208(421,⋅)
χ46208(469,⋅)
χ46208(485,⋅)
χ46208(509,⋅)
χ46208(565,⋅)
χ46208(573,⋅)
χ46208(621,⋅)
χ46208(629,⋅)
χ46208(637,⋅)
χ46208(661,⋅)
χ46208(717,⋅)
χ46208(725,⋅)
χ46208(773,⋅)
χ46208(781,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(28159,36101,14081) → (1,e(3225),e(34231))
a |
−1 | 1 | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 21 | 23 |
χ46208(421,a) |
−1 | 1 | e(54725161) | e(54724435) | e(912373) | e(27362425) | e(18241189) | e(54722957) | e(13681031) | e(1368493) | e(54721927) | e(2736469) |