Properties

Label 46208.53
Modulus 4620846208
Conductor 4620846208
Order 54725472
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(46208, base_ring=CyclotomicField(5472))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,855,1328]))
 
pari: [g,chi] = znchar(Mod(53,46208))
 

Basic properties

Modulus: 4620846208
Conductor: 4620846208
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 54725472
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 46208.fn

χ46208(13,)\chi_{46208}(13,\cdot) χ46208(21,)\chi_{46208}(21,\cdot) χ46208(29,)\chi_{46208}(29,\cdot) χ46208(53,)\chi_{46208}(53,\cdot) χ46208(109,)\chi_{46208}(109,\cdot) χ46208(117,)\chi_{46208}(117,\cdot) χ46208(165,)\chi_{46208}(165,\cdot) χ46208(173,)\chi_{46208}(173,\cdot) χ46208(181,)\chi_{46208}(181,\cdot) χ46208(205,)\chi_{46208}(205,\cdot) χ46208(261,)\chi_{46208}(261,\cdot) χ46208(269,)\chi_{46208}(269,\cdot) χ46208(317,)\chi_{46208}(317,\cdot) χ46208(325,)\chi_{46208}(325,\cdot) χ46208(357,)\chi_{46208}(357,\cdot) χ46208(413,)\chi_{46208}(413,\cdot) χ46208(421,)\chi_{46208}(421,\cdot) χ46208(469,)\chi_{46208}(469,\cdot) χ46208(485,)\chi_{46208}(485,\cdot) χ46208(509,)\chi_{46208}(509,\cdot) χ46208(565,)\chi_{46208}(565,\cdot) χ46208(573,)\chi_{46208}(573,\cdot) χ46208(621,)\chi_{46208}(621,\cdot) χ46208(629,)\chi_{46208}(629,\cdot) χ46208(637,)\chi_{46208}(637,\cdot) χ46208(661,)\chi_{46208}(661,\cdot) χ46208(717,)\chi_{46208}(717,\cdot) χ46208(725,)\chi_{46208}(725,\cdot) χ46208(773,)\chi_{46208}(773,\cdot) χ46208(781,)\chi_{46208}(781,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ5472)\Q(\zeta_{5472})
Fixed field: Number field defined by a degree 5472 polynomial (not computed)

Values on generators

(28159,36101,14081)(28159,36101,14081)(1,e(532),e(83342))(1,e\left(\frac{5}{32}\right),e\left(\frac{83}{342}\right))

First values

aa 1-11133557799111113131515171721212323
χ46208(53,a) \chi_{ 46208 }(53, a) 1-111e(11095472)e\left(\frac{1109}{5472}\right)e(25195472)e\left(\frac{2519}{5472}\right)e(881912)e\left(\frac{881}{912}\right)e(11092736)e\left(\frac{1109}{2736}\right)e(651824)e\left(\frac{65}{1824}\right)e(10335472)e\left(\frac{1033}{5472}\right)e(9071368)e\left(\frac{907}{1368}\right)e(3051368)e\left(\frac{305}{1368}\right)e(9235472)e\left(\frac{923}{5472}\right)e(16972736)e\left(\frac{1697}{2736}\right)
sage: chi.jacobi_sum(n)
 
χ46208(53,a)   \chi_{ 46208 }(53,a) \; at   a=\;a = e.g. 2