from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(46208, base_ring=CyclotomicField(5472))
M = H._module
chi = DirichletCharacter(H, M([0,855,1328]))
pari: [g,chi] = znchar(Mod(53,46208))
χ46208(13,⋅)
χ46208(21,⋅)
χ46208(29,⋅)
χ46208(53,⋅)
χ46208(109,⋅)
χ46208(117,⋅)
χ46208(165,⋅)
χ46208(173,⋅)
χ46208(181,⋅)
χ46208(205,⋅)
χ46208(261,⋅)
χ46208(269,⋅)
χ46208(317,⋅)
χ46208(325,⋅)
χ46208(357,⋅)
χ46208(413,⋅)
χ46208(421,⋅)
χ46208(469,⋅)
χ46208(485,⋅)
χ46208(509,⋅)
χ46208(565,⋅)
χ46208(573,⋅)
χ46208(621,⋅)
χ46208(629,⋅)
χ46208(637,⋅)
χ46208(661,⋅)
χ46208(717,⋅)
χ46208(725,⋅)
χ46208(773,⋅)
χ46208(781,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(28159,36101,14081) → (1,e(325),e(34283))
a |
−1 | 1 | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 21 | 23 |
χ46208(53,a) |
−1 | 1 | e(54721109) | e(54722519) | e(912881) | e(27361109) | e(182465) | e(54721033) | e(1368907) | e(1368305) | e(5472923) | e(27361697) |