from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(46208, base_ring=CyclotomicField(456))
M = H._module
chi = DirichletCharacter(H, M([0,285,400]))
pari: [g,chi] = znchar(Mod(49,46208))
χ46208(49,⋅)
χ46208(273,⋅)
χ46208(657,⋅)
χ46208(881,⋅)
χ46208(1265,⋅)
χ46208(1489,⋅)
χ46208(2481,⋅)
χ46208(2705,⋅)
χ46208(3089,⋅)
χ46208(3313,⋅)
χ46208(3697,⋅)
χ46208(3921,⋅)
χ46208(4305,⋅)
χ46208(4529,⋅)
χ46208(4913,⋅)
χ46208(5137,⋅)
χ46208(5521,⋅)
χ46208(5745,⋅)
χ46208(6129,⋅)
χ46208(6353,⋅)
χ46208(6737,⋅)
χ46208(6961,⋅)
χ46208(7345,⋅)
χ46208(7569,⋅)
χ46208(7953,⋅)
χ46208(8177,⋅)
χ46208(8561,⋅)
χ46208(8785,⋅)
χ46208(9169,⋅)
χ46208(9393,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(28159,36101,14081) → (1,e(85),e(5750))
a |
−1 | 1 | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 21 | 23 |
χ46208(49,a) |
1 | 1 | e(456367) | e(45661) | e(7663) | e(228139) | e(15291) | e(456443) | e(114107) | e(11485) | e(456289) | e(228187) |