Properties

Label 46208.6737
Modulus 4620846208
Conductor 1155211552
Order 456456
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(46208, base_ring=CyclotomicField(456))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,171,352]))
 
pari: [g,chi] = znchar(Mod(6737,46208))
 

Basic properties

Modulus: 4620846208
Conductor: 1155211552
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 456456
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ11552(11069,)\chi_{11552}(11069,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 46208.ej

χ46208(49,)\chi_{46208}(49,\cdot) χ46208(273,)\chi_{46208}(273,\cdot) χ46208(657,)\chi_{46208}(657,\cdot) χ46208(881,)\chi_{46208}(881,\cdot) χ46208(1265,)\chi_{46208}(1265,\cdot) χ46208(1489,)\chi_{46208}(1489,\cdot) χ46208(2481,)\chi_{46208}(2481,\cdot) χ46208(2705,)\chi_{46208}(2705,\cdot) χ46208(3089,)\chi_{46208}(3089,\cdot) χ46208(3313,)\chi_{46208}(3313,\cdot) χ46208(3697,)\chi_{46208}(3697,\cdot) χ46208(3921,)\chi_{46208}(3921,\cdot) χ46208(4305,)\chi_{46208}(4305,\cdot) χ46208(4529,)\chi_{46208}(4529,\cdot) χ46208(4913,)\chi_{46208}(4913,\cdot) χ46208(5137,)\chi_{46208}(5137,\cdot) χ46208(5521,)\chi_{46208}(5521,\cdot) χ46208(5745,)\chi_{46208}(5745,\cdot) χ46208(6129,)\chi_{46208}(6129,\cdot) χ46208(6353,)\chi_{46208}(6353,\cdot) χ46208(6737,)\chi_{46208}(6737,\cdot) χ46208(6961,)\chi_{46208}(6961,\cdot) χ46208(7345,)\chi_{46208}(7345,\cdot) χ46208(7569,)\chi_{46208}(7569,\cdot) χ46208(7953,)\chi_{46208}(7953,\cdot) χ46208(8177,)\chi_{46208}(8177,\cdot) χ46208(8561,)\chi_{46208}(8561,\cdot) χ46208(8785,)\chi_{46208}(8785,\cdot) χ46208(9169,)\chi_{46208}(9169,\cdot) χ46208(9393,)\chi_{46208}(9393,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ456)\Q(\zeta_{456})
Fixed field: Number field defined by a degree 456 polynomial (not computed)

Values on generators

(28159,36101,14081)(28159,36101,14081)(1,e(38),e(4457))(1,e\left(\frac{3}{8}\right),e\left(\frac{44}{57}\right))

First values

aa 1-11133557799111113131515171721212323
χ46208(6737,a) \chi_{ 46208 }(6737, a) 1111e(193456)e\left(\frac{193}{456}\right)e(211456)e\left(\frac{211}{456}\right)e(4176)e\left(\frac{41}{76}\right)e(193228)e\left(\frac{193}{228}\right)e(93152)e\left(\frac{93}{152}\right)e(269456)e\left(\frac{269}{456}\right)e(101114)e\left(\frac{101}{114}\right)e(109114)e\left(\frac{109}{114}\right)e(439456)e\left(\frac{439}{456}\right)e(217228)e\left(\frac{217}{228}\right)
sage: chi.jacobi_sum(n)
 
χ46208(6737,a)   \chi_{ 46208 }(6737,a) \; at   a=\;a = e.g. 2