from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(46208, base_ring=CyclotomicField(5472))
M = H._module
chi = DirichletCharacter(H, M([2736,5301,368]))
pari: [g,chi] = znchar(Mod(51,46208))
χ46208(3,⋅)
χ46208(51,⋅)
χ46208(59,⋅)
χ46208(67,⋅)
χ46208(91,⋅)
χ46208(147,⋅)
χ46208(155,⋅)
χ46208(203,⋅)
χ46208(211,⋅)
χ46208(219,⋅)
χ46208(243,⋅)
χ46208(355,⋅)
χ46208(363,⋅)
χ46208(371,⋅)
χ46208(395,⋅)
χ46208(451,⋅)
χ46208(459,⋅)
χ46208(507,⋅)
χ46208(515,⋅)
χ46208(523,⋅)
χ46208(547,⋅)
χ46208(603,⋅)
χ46208(611,⋅)
χ46208(659,⋅)
χ46208(667,⋅)
χ46208(675,⋅)
χ46208(699,⋅)
χ46208(755,⋅)
χ46208(763,⋅)
χ46208(811,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(28159,36101,14081) → (−1,e(3231),e(34223))
a |
−1 | 1 | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 21 | 23 |
χ46208(51,a) |
1 | 1 | e(54724127) | e(54723125) | e(912251) | e(27361391) | e(18241283) | e(54723595) | e(1368445) | e(1368443) | e(5472161) | e(27362411) |