Properties

Label 46208.755
Modulus 4620846208
Conductor 4620846208
Order 54725472
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(46208, base_ring=CyclotomicField(5472))
 
M = H._module
 
chi = DirichletCharacter(H, M([2736,2565,3856]))
 
pari: [g,chi] = znchar(Mod(755,46208))
 

Basic properties

Modulus: 4620846208
Conductor: 4620846208
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 54725472
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 46208.fm

χ46208(3,)\chi_{46208}(3,\cdot) χ46208(51,)\chi_{46208}(51,\cdot) χ46208(59,)\chi_{46208}(59,\cdot) χ46208(67,)\chi_{46208}(67,\cdot) χ46208(91,)\chi_{46208}(91,\cdot) χ46208(147,)\chi_{46208}(147,\cdot) χ46208(155,)\chi_{46208}(155,\cdot) χ46208(203,)\chi_{46208}(203,\cdot) χ46208(211,)\chi_{46208}(211,\cdot) χ46208(219,)\chi_{46208}(219,\cdot) χ46208(243,)\chi_{46208}(243,\cdot) χ46208(355,)\chi_{46208}(355,\cdot) χ46208(363,)\chi_{46208}(363,\cdot) χ46208(371,)\chi_{46208}(371,\cdot) χ46208(395,)\chi_{46208}(395,\cdot) χ46208(451,)\chi_{46208}(451,\cdot) χ46208(459,)\chi_{46208}(459,\cdot) χ46208(507,)\chi_{46208}(507,\cdot) χ46208(515,)\chi_{46208}(515,\cdot) χ46208(523,)\chi_{46208}(523,\cdot) χ46208(547,)\chi_{46208}(547,\cdot) χ46208(603,)\chi_{46208}(603,\cdot) χ46208(611,)\chi_{46208}(611,\cdot) χ46208(659,)\chi_{46208}(659,\cdot) χ46208(667,)\chi_{46208}(667,\cdot) χ46208(675,)\chi_{46208}(675,\cdot) χ46208(699,)\chi_{46208}(699,\cdot) χ46208(755,)\chi_{46208}(755,\cdot) χ46208(763,)\chi_{46208}(763,\cdot) χ46208(811,)\chi_{46208}(811,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ5472)\Q(\zeta_{5472})
Fixed field: Number field defined by a degree 5472 polynomial (not computed)

Values on generators

(28159,36101,14081)(28159,36101,14081)(1,e(1532),e(241342))(-1,e\left(\frac{15}{32}\right),e\left(\frac{241}{342}\right))

First values

aa 1-11133557799111113131515171721212323
χ46208(755,a) \chi_{ 46208 }(755, a) 1111e(46875472)e\left(\frac{4687}{5472}\right)e(52215472)e\left(\frac{5221}{5472}\right)e(811912)e\left(\frac{811}{912}\right)e(19512736)e\left(\frac{1951}{2736}\right)e(4031824)e\left(\frac{403}{1824}\right)e(47635472)e\left(\frac{4763}{5472}\right)e(11091368)e\left(\frac{1109}{1368}\right)e(5231368)e\left(\frac{523}{1368}\right)e(40815472)e\left(\frac{4081}{5472}\right)e(25872736)e\left(\frac{2587}{2736}\right)
sage: chi.jacobi_sum(n)
 
χ46208(755,a)   \chi_{ 46208 }(755,a) \; at   a=\;a = e.g. 2