Properties

Label 4655.3432
Modulus $4655$
Conductor $4655$
Order $84$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4655, base_ring=CyclotomicField(84))
 
M = H._module
 
chi = DirichletCharacter(H, M([21,52,70]))
 
pari: [g,chi] = znchar(Mod(3432,4655))
 

Basic properties

Modulus: \(4655\)
Conductor: \(4655\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(84\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 4655.gc

\(\chi_{4655}(107,\cdot)\) \(\chi_{4655}(578,\cdot)\) \(\chi_{4655}(772,\cdot)\) \(\chi_{4655}(977,\cdot)\) \(\chi_{4655}(1038,\cdot)\) \(\chi_{4655}(1437,\cdot)\) \(\chi_{4655}(1642,\cdot)\) \(\chi_{4655}(1703,\cdot)\) \(\chi_{4655}(1908,\cdot)\) \(\chi_{4655}(2102,\cdot)\) \(\chi_{4655}(2307,\cdot)\) \(\chi_{4655}(2368,\cdot)\) \(\chi_{4655}(2573,\cdot)\) \(\chi_{4655}(2767,\cdot)\) \(\chi_{4655}(2972,\cdot)\) \(\chi_{4655}(3033,\cdot)\) \(\chi_{4655}(3238,\cdot)\) \(\chi_{4655}(3432,\cdot)\) \(\chi_{4655}(3637,\cdot)\) \(\chi_{4655}(3698,\cdot)\) \(\chi_{4655}(3903,\cdot)\) \(\chi_{4655}(4302,\cdot)\) \(\chi_{4655}(4363,\cdot)\) \(\chi_{4655}(4568,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{84})$
Fixed field: Number field defined by a degree 84 polynomial

Values on generators

\((932,3041,2206)\) → \((i,e\left(\frac{13}{21}\right),e\left(\frac{5}{6}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(6\)\(8\)\(9\)\(11\)\(12\)\(13\)\(16\)
\( \chi_{ 4655 }(3432, a) \) \(1\)\(1\)\(e\left(\frac{5}{28}\right)\)\(e\left(\frac{17}{84}\right)\)\(e\left(\frac{5}{14}\right)\)\(e\left(\frac{8}{21}\right)\)\(e\left(\frac{15}{28}\right)\)\(e\left(\frac{17}{42}\right)\)\(e\left(\frac{16}{21}\right)\)\(e\left(\frac{47}{84}\right)\)\(e\left(\frac{29}{84}\right)\)\(e\left(\frac{5}{7}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 4655 }(3432,a) \;\) at \(\;a = \) e.g. 2