from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4655, base_ring=CyclotomicField(84))
M = H._module
chi = DirichletCharacter(H, M([21,44,14]))
pari: [g,chi] = znchar(Mod(977,4655))
χ4655(107,⋅)
χ4655(578,⋅)
χ4655(772,⋅)
χ4655(977,⋅)
χ4655(1038,⋅)
χ4655(1437,⋅)
χ4655(1642,⋅)
χ4655(1703,⋅)
χ4655(1908,⋅)
χ4655(2102,⋅)
χ4655(2307,⋅)
χ4655(2368,⋅)
χ4655(2573,⋅)
χ4655(2767,⋅)
χ4655(2972,⋅)
χ4655(3033,⋅)
χ4655(3238,⋅)
χ4655(3432,⋅)
χ4655(3637,⋅)
χ4655(3698,⋅)
χ4655(3903,⋅)
χ4655(4302,⋅)
χ4655(4363,⋅)
χ4655(4568,⋅)
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(932,3041,2206) → (i,e(2111),e(61))
a |
−1 | 1 | 2 | 3 | 4 | 6 | 8 | 9 | 11 | 12 | 13 | 16 |
χ4655(977,a) |
1 | 1 | e(281) | e(8437) | e(141) | e(2110) | e(283) | e(4237) | e(2120) | e(8443) | e(8473) | e(71) |