Properties

Label 4655.516
Modulus 46554655
Conductor 931931
Order 126126
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4655, base_ring=CyclotomicField(126))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,51,91]))
 
pari: [g,chi] = znchar(Mod(516,4655))
 

Basic properties

Modulus: 46554655
Conductor: 931931
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 126126
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ931(516,)\chi_{931}(516,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 4655.gd

χ4655(241,)\chi_{4655}(241,\cdot) χ4655(306,)\chi_{4655}(306,\cdot) χ4655(516,)\chi_{4655}(516,\cdot) χ4655(661,)\chi_{4655}(661,\cdot) χ4655(831,)\chi_{4655}(831,\cdot) χ4655(906,)\chi_{4655}(906,\cdot) χ4655(941,)\chi_{4655}(941,\cdot) χ4655(971,)\chi_{4655}(971,\cdot) χ4655(1181,)\chi_{4655}(1181,\cdot) χ4655(1326,)\chi_{4655}(1326,\cdot) χ4655(1496,)\chi_{4655}(1496,\cdot) χ4655(1571,)\chi_{4655}(1571,\cdot) χ4655(1606,)\chi_{4655}(1606,\cdot) χ4655(1846,)\chi_{4655}(1846,\cdot) χ4655(2161,)\chi_{4655}(2161,\cdot) χ4655(2271,)\chi_{4655}(2271,\cdot) χ4655(2301,)\chi_{4655}(2301,\cdot) χ4655(2511,)\chi_{4655}(2511,\cdot) χ4655(2656,)\chi_{4655}(2656,\cdot) χ4655(2826,)\chi_{4655}(2826,\cdot) χ4655(2901,)\chi_{4655}(2901,\cdot) χ4655(2936,)\chi_{4655}(2936,\cdot) χ4655(2966,)\chi_{4655}(2966,\cdot) χ4655(3176,)\chi_{4655}(3176,\cdot) χ4655(3321,)\chi_{4655}(3321,\cdot) χ4655(3491,)\chi_{4655}(3491,\cdot) χ4655(3566,)\chi_{4655}(3566,\cdot) χ4655(3601,)\chi_{4655}(3601,\cdot) χ4655(3631,)\chi_{4655}(3631,\cdot) χ4655(3986,)\chi_{4655}(3986,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ63)\Q(\zeta_{63})
Fixed field: Number field defined by a degree 126 polynomial (not computed)

Values on generators

(932,3041,2206)(932,3041,2206)(1,e(1742),e(1318))(1,e\left(\frac{17}{42}\right),e\left(\frac{13}{18}\right))

First values

aa 1-1112233446688991111121213131616
χ4655(516,a) \chi_{ 4655 }(516, a) 1111e(31126)e\left(\frac{31}{126}\right)e(5063)e\left(\frac{50}{63}\right)e(3163)e\left(\frac{31}{63}\right)e(5126)e\left(\frac{5}{126}\right)e(3142)e\left(\frac{31}{42}\right)e(3763)e\left(\frac{37}{63}\right)e(67)e\left(\frac{6}{7}\right)e(27)e\left(\frac{2}{7}\right)e(6163)e\left(\frac{61}{63}\right)e(6263)e\left(\frac{62}{63}\right)
sage: chi.jacobi_sum(n)
 
χ4655(516,a)   \chi_{ 4655 }(516,a) \; at   a=\;a = e.g. 2