from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4655, base_ring=CyclotomicField(126))
M = H._module
chi = DirichletCharacter(H, M([0,111,77]))
pari: [g,chi] = znchar(Mod(661,4655))
χ4655(241,⋅)
χ4655(306,⋅)
χ4655(516,⋅)
χ4655(661,⋅)
χ4655(831,⋅)
χ4655(906,⋅)
χ4655(941,⋅)
χ4655(971,⋅)
χ4655(1181,⋅)
χ4655(1326,⋅)
χ4655(1496,⋅)
χ4655(1571,⋅)
χ4655(1606,⋅)
χ4655(1846,⋅)
χ4655(2161,⋅)
χ4655(2271,⋅)
χ4655(2301,⋅)
χ4655(2511,⋅)
χ4655(2656,⋅)
χ4655(2826,⋅)
χ4655(2901,⋅)
χ4655(2936,⋅)
χ4655(2966,⋅)
χ4655(3176,⋅)
χ4655(3321,⋅)
χ4655(3491,⋅)
χ4655(3566,⋅)
χ4655(3601,⋅)
χ4655(3631,⋅)
χ4655(3986,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(932,3041,2206) → (1,e(4237),e(1811))
a |
−1 | 1 | 2 | 3 | 4 | 6 | 8 | 9 | 11 | 12 | 13 | 16 |
χ4655(661,a) |
1 | 1 | e(12665) | e(6352) | e(632) | e(12643) | e(4223) | e(6341) | e(74) | e(76) | e(638) | e(634) |