Properties

Label 4655.661
Modulus 46554655
Conductor 931931
Order 126126
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4655, base_ring=CyclotomicField(126))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,111,77]))
 
pari: [g,chi] = znchar(Mod(661,4655))
 

Basic properties

Modulus: 46554655
Conductor: 931931
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 126126
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ931(661,)\chi_{931}(661,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 4655.gd

χ4655(241,)\chi_{4655}(241,\cdot) χ4655(306,)\chi_{4655}(306,\cdot) χ4655(516,)\chi_{4655}(516,\cdot) χ4655(661,)\chi_{4655}(661,\cdot) χ4655(831,)\chi_{4655}(831,\cdot) χ4655(906,)\chi_{4655}(906,\cdot) χ4655(941,)\chi_{4655}(941,\cdot) χ4655(971,)\chi_{4655}(971,\cdot) χ4655(1181,)\chi_{4655}(1181,\cdot) χ4655(1326,)\chi_{4655}(1326,\cdot) χ4655(1496,)\chi_{4655}(1496,\cdot) χ4655(1571,)\chi_{4655}(1571,\cdot) χ4655(1606,)\chi_{4655}(1606,\cdot) χ4655(1846,)\chi_{4655}(1846,\cdot) χ4655(2161,)\chi_{4655}(2161,\cdot) χ4655(2271,)\chi_{4655}(2271,\cdot) χ4655(2301,)\chi_{4655}(2301,\cdot) χ4655(2511,)\chi_{4655}(2511,\cdot) χ4655(2656,)\chi_{4655}(2656,\cdot) χ4655(2826,)\chi_{4655}(2826,\cdot) χ4655(2901,)\chi_{4655}(2901,\cdot) χ4655(2936,)\chi_{4655}(2936,\cdot) χ4655(2966,)\chi_{4655}(2966,\cdot) χ4655(3176,)\chi_{4655}(3176,\cdot) χ4655(3321,)\chi_{4655}(3321,\cdot) χ4655(3491,)\chi_{4655}(3491,\cdot) χ4655(3566,)\chi_{4655}(3566,\cdot) χ4655(3601,)\chi_{4655}(3601,\cdot) χ4655(3631,)\chi_{4655}(3631,\cdot) χ4655(3986,)\chi_{4655}(3986,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ63)\Q(\zeta_{63})
Fixed field: Number field defined by a degree 126 polynomial (not computed)

Values on generators

(932,3041,2206)(932,3041,2206)(1,e(3742),e(1118))(1,e\left(\frac{37}{42}\right),e\left(\frac{11}{18}\right))

First values

aa 1-1112233446688991111121213131616
χ4655(661,a) \chi_{ 4655 }(661, a) 1111e(65126)e\left(\frac{65}{126}\right)e(5263)e\left(\frac{52}{63}\right)e(263)e\left(\frac{2}{63}\right)e(43126)e\left(\frac{43}{126}\right)e(2342)e\left(\frac{23}{42}\right)e(4163)e\left(\frac{41}{63}\right)e(47)e\left(\frac{4}{7}\right)e(67)e\left(\frac{6}{7}\right)e(863)e\left(\frac{8}{63}\right)e(463)e\left(\frac{4}{63}\right)
sage: chi.jacobi_sum(n)
 
χ4655(661,a)   \chi_{ 4655 }(661,a) \; at   a=\;a = e.g. 2