Properties

Label 4675.3437
Modulus $4675$
Conductor $4675$
Order $80$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4675, base_ring=CyclotomicField(80))
 
M = H._module
 
chi = DirichletCharacter(H, M([36,32,5]))
 
pari: [g,chi] = znchar(Mod(3437,4675))
 

Basic properties

Modulus: \(4675\)
Conductor: \(4675\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(80\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 4675.ih

\(\chi_{4675}(58,\cdot)\) \(\chi_{4675}(267,\cdot)\) \(\chi_{4675}(313,\cdot)\) \(\chi_{4675}(333,\cdot)\) \(\chi_{4675}(422,\cdot)\) \(\chi_{4675}(588,\cdot)\) \(\chi_{4675}(653,\cdot)\) \(\chi_{4675}(702,\cdot)\) \(\chi_{4675}(823,\cdot)\) \(\chi_{4675}(928,\cdot)\) \(\chi_{4675}(972,\cdot)\) \(\chi_{4675}(1098,\cdot)\) \(\chi_{4675}(1527,\cdot)\) \(\chi_{4675}(1797,\cdot)\) \(\chi_{4675}(1983,\cdot)\) \(\chi_{4675}(2062,\cdot)\) \(\chi_{4675}(2077,\cdot)\) \(\chi_{4675}(2238,\cdot)\) \(\chi_{4675}(2578,\cdot)\) \(\chi_{4675}(2742,\cdot)\) \(\chi_{4675}(2748,\cdot)\) \(\chi_{4675}(2887,\cdot)\) \(\chi_{4675}(2902,\cdot)\) \(\chi_{4675}(3083,\cdot)\) \(\chi_{4675}(3338,\cdot)\) \(\chi_{4675}(3437,\cdot)\) \(\chi_{4675}(3567,\cdot)\) \(\chi_{4675}(3678,\cdot)\) \(\chi_{4675}(3848,\cdot)\) \(\chi_{4675}(4117,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{80})$
Fixed field: Number field defined by a degree 80 polynomial

Values on generators

\((4302,3401,3301)\) → \((e\left(\frac{9}{20}\right),e\left(\frac{2}{5}\right),e\left(\frac{1}{16}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(6\)\(7\)\(8\)\(9\)\(12\)\(13\)\(14\)
\( \chi_{ 4675 }(3437, a) \) \(1\)\(1\)\(e\left(\frac{29}{40}\right)\)\(e\left(\frac{33}{80}\right)\)\(e\left(\frac{9}{20}\right)\)\(e\left(\frac{11}{80}\right)\)\(e\left(\frac{59}{80}\right)\)\(e\left(\frac{7}{40}\right)\)\(e\left(\frac{33}{40}\right)\)\(e\left(\frac{69}{80}\right)\)\(e\left(\frac{1}{5}\right)\)\(e\left(\frac{37}{80}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 4675 }(3437,a) \;\) at \(\;a = \) e.g. 2