from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4675, base_ring=CyclotomicField(80))
M = H._module
chi = DirichletCharacter(H, M([36,32,5]))
pari: [g,chi] = znchar(Mod(3437,4675))
χ4675(58,⋅)
χ4675(267,⋅)
χ4675(313,⋅)
χ4675(333,⋅)
χ4675(422,⋅)
χ4675(588,⋅)
χ4675(653,⋅)
χ4675(702,⋅)
χ4675(823,⋅)
χ4675(928,⋅)
χ4675(972,⋅)
χ4675(1098,⋅)
χ4675(1527,⋅)
χ4675(1797,⋅)
χ4675(1983,⋅)
χ4675(2062,⋅)
χ4675(2077,⋅)
χ4675(2238,⋅)
χ4675(2578,⋅)
χ4675(2742,⋅)
χ4675(2748,⋅)
χ4675(2887,⋅)
χ4675(2902,⋅)
χ4675(3083,⋅)
χ4675(3338,⋅)
χ4675(3437,⋅)
χ4675(3567,⋅)
χ4675(3678,⋅)
χ4675(3848,⋅)
χ4675(4117,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(4302,3401,3301) → (e(209),e(52),e(161))
a |
−1 | 1 | 2 | 3 | 4 | 6 | 7 | 8 | 9 | 12 | 13 | 14 |
χ4675(3437,a) |
1 | 1 | e(4029) | e(8033) | e(209) | e(8011) | e(8059) | e(407) | e(4033) | e(8069) | e(51) | e(8037) |