Properties

Label 4675.3437
Modulus 46754675
Conductor 46754675
Order 8080
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4675, base_ring=CyclotomicField(80))
 
M = H._module
 
chi = DirichletCharacter(H, M([36,32,5]))
 
pari: [g,chi] = znchar(Mod(3437,4675))
 

Basic properties

Modulus: 46754675
Conductor: 46754675
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 8080
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 4675.ih

χ4675(58,)\chi_{4675}(58,\cdot) χ4675(267,)\chi_{4675}(267,\cdot) χ4675(313,)\chi_{4675}(313,\cdot) χ4675(333,)\chi_{4675}(333,\cdot) χ4675(422,)\chi_{4675}(422,\cdot) χ4675(588,)\chi_{4675}(588,\cdot) χ4675(653,)\chi_{4675}(653,\cdot) χ4675(702,)\chi_{4675}(702,\cdot) χ4675(823,)\chi_{4675}(823,\cdot) χ4675(928,)\chi_{4675}(928,\cdot) χ4675(972,)\chi_{4675}(972,\cdot) χ4675(1098,)\chi_{4675}(1098,\cdot) χ4675(1527,)\chi_{4675}(1527,\cdot) χ4675(1797,)\chi_{4675}(1797,\cdot) χ4675(1983,)\chi_{4675}(1983,\cdot) χ4675(2062,)\chi_{4675}(2062,\cdot) χ4675(2077,)\chi_{4675}(2077,\cdot) χ4675(2238,)\chi_{4675}(2238,\cdot) χ4675(2578,)\chi_{4675}(2578,\cdot) χ4675(2742,)\chi_{4675}(2742,\cdot) χ4675(2748,)\chi_{4675}(2748,\cdot) χ4675(2887,)\chi_{4675}(2887,\cdot) χ4675(2902,)\chi_{4675}(2902,\cdot) χ4675(3083,)\chi_{4675}(3083,\cdot) χ4675(3338,)\chi_{4675}(3338,\cdot) χ4675(3437,)\chi_{4675}(3437,\cdot) χ4675(3567,)\chi_{4675}(3567,\cdot) χ4675(3678,)\chi_{4675}(3678,\cdot) χ4675(3848,)\chi_{4675}(3848,\cdot) χ4675(4117,)\chi_{4675}(4117,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ80)\Q(\zeta_{80})
Fixed field: Number field defined by a degree 80 polynomial

Values on generators

(4302,3401,3301)(4302,3401,3301)(e(920),e(25),e(116))(e\left(\frac{9}{20}\right),e\left(\frac{2}{5}\right),e\left(\frac{1}{16}\right))

First values

aa 1-11122334466778899121213131414
χ4675(3437,a) \chi_{ 4675 }(3437, a) 1111e(2940)e\left(\frac{29}{40}\right)e(3380)e\left(\frac{33}{80}\right)e(920)e\left(\frac{9}{20}\right)e(1180)e\left(\frac{11}{80}\right)e(5980)e\left(\frac{59}{80}\right)e(740)e\left(\frac{7}{40}\right)e(3340)e\left(\frac{33}{40}\right)e(6980)e\left(\frac{69}{80}\right)e(15)e\left(\frac{1}{5}\right)e(3780)e\left(\frac{37}{80}\right)
sage: chi.jacobi_sum(n)
 
χ4675(3437,a)   \chi_{ 4675 }(3437,a) \; at   a=\;a = e.g. 2