Properties

Label 4675.ih
Modulus $4675$
Conductor $4675$
Order $80$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4675, base_ring=CyclotomicField(80))
 
M = H._module
 
chi = DirichletCharacter(H, M([12,64,55]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(58,4675))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(4675\)
Conductor: \(4675\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(80\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{80})$
Fixed field: Number field defined by a degree 80 polynomial

First 31 of 32 characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(3\) \(4\) \(6\) \(7\) \(8\) \(9\) \(12\) \(13\) \(14\)
\(\chi_{4675}(58,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{40}\right)\) \(e\left(\frac{11}{80}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{57}{80}\right)\) \(e\left(\frac{73}{80}\right)\) \(e\left(\frac{29}{40}\right)\) \(e\left(\frac{11}{40}\right)\) \(e\left(\frac{23}{80}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{39}{80}\right)\)
\(\chi_{4675}(267,\cdot)\) \(1\) \(1\) \(e\left(\frac{33}{40}\right)\) \(e\left(\frac{61}{80}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{47}{80}\right)\) \(e\left(\frac{63}{80}\right)\) \(e\left(\frac{19}{40}\right)\) \(e\left(\frac{21}{40}\right)\) \(e\left(\frac{33}{80}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{49}{80}\right)\)
\(\chi_{4675}(313,\cdot)\) \(1\) \(1\) \(e\left(\frac{39}{40}\right)\) \(e\left(\frac{43}{80}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{41}{80}\right)\) \(e\left(\frac{9}{80}\right)\) \(e\left(\frac{37}{40}\right)\) \(e\left(\frac{3}{40}\right)\) \(e\left(\frac{39}{80}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{7}{80}\right)\)
\(\chi_{4675}(333,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{40}\right)\) \(e\left(\frac{51}{80}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{17}{80}\right)\) \(e\left(\frac{33}{80}\right)\) \(e\left(\frac{29}{40}\right)\) \(e\left(\frac{11}{40}\right)\) \(e\left(\frac{63}{80}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{79}{80}\right)\)
\(\chi_{4675}(422,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{40}\right)\) \(e\left(\frac{9}{80}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{3}{80}\right)\) \(e\left(\frac{67}{80}\right)\) \(e\left(\frac{31}{40}\right)\) \(e\left(\frac{9}{40}\right)\) \(e\left(\frac{77}{80}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{61}{80}\right)\)
\(\chi_{4675}(588,\cdot)\) \(1\) \(1\) \(e\left(\frac{39}{40}\right)\) \(e\left(\frac{3}{80}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{1}{80}\right)\) \(e\left(\frac{49}{80}\right)\) \(e\left(\frac{37}{40}\right)\) \(e\left(\frac{3}{40}\right)\) \(e\left(\frac{79}{80}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{47}{80}\right)\)
\(\chi_{4675}(653,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{40}\right)\) \(e\left(\frac{59}{80}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{73}{80}\right)\) \(e\left(\frac{57}{80}\right)\) \(e\left(\frac{21}{40}\right)\) \(e\left(\frac{19}{40}\right)\) \(e\left(\frac{7}{80}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{71}{80}\right)\)
\(\chi_{4675}(702,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{40}\right)\) \(e\left(\frac{37}{80}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{39}{80}\right)\) \(e\left(\frac{71}{80}\right)\) \(e\left(\frac{3}{40}\right)\) \(e\left(\frac{37}{40}\right)\) \(e\left(\frac{41}{80}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{73}{80}\right)\)
\(\chi_{4675}(823,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{40}\right)\) \(e\left(\frac{27}{80}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{9}{80}\right)\) \(e\left(\frac{41}{80}\right)\) \(e\left(\frac{13}{40}\right)\) \(e\left(\frac{27}{40}\right)\) \(e\left(\frac{71}{80}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{23}{80}\right)\)
\(\chi_{4675}(928,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{40}\right)\) \(e\left(\frac{19}{80}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{33}{80}\right)\) \(e\left(\frac{17}{80}\right)\) \(e\left(\frac{21}{40}\right)\) \(e\left(\frac{19}{40}\right)\) \(e\left(\frac{47}{80}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{31}{80}\right)\)
\(\chi_{4675}(972,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{40}\right)\) \(e\left(\frac{49}{80}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{43}{80}\right)\) \(e\left(\frac{27}{80}\right)\) \(e\left(\frac{31}{40}\right)\) \(e\left(\frac{9}{40}\right)\) \(e\left(\frac{37}{80}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{21}{80}\right)\)
\(\chi_{4675}(1098,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{40}\right)\) \(e\left(\frac{67}{80}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{49}{80}\right)\) \(e\left(\frac{1}{80}\right)\) \(e\left(\frac{13}{40}\right)\) \(e\left(\frac{27}{40}\right)\) \(e\left(\frac{31}{80}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{63}{80}\right)\)
\(\chi_{4675}(1527,\cdot)\) \(1\) \(1\) \(e\left(\frac{21}{40}\right)\) \(e\left(\frac{57}{80}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{19}{80}\right)\) \(e\left(\frac{51}{80}\right)\) \(e\left(\frac{23}{40}\right)\) \(e\left(\frac{17}{40}\right)\) \(e\left(\frac{61}{80}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{13}{80}\right)\)
\(\chi_{4675}(1797,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{40}\right)\) \(e\left(\frac{29}{80}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{63}{80}\right)\) \(e\left(\frac{47}{80}\right)\) \(e\left(\frac{11}{40}\right)\) \(e\left(\frac{29}{40}\right)\) \(e\left(\frac{17}{80}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{1}{80}\right)\)
\(\chi_{4675}(1983,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{40}\right)\) \(e\left(\frac{71}{80}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{77}{80}\right)\) \(e\left(\frac{13}{80}\right)\) \(e\left(\frac{9}{40}\right)\) \(e\left(\frac{31}{40}\right)\) \(e\left(\frac{3}{80}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{19}{80}\right)\)
\(\chi_{4675}(2062,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{40}\right)\) \(e\left(\frac{53}{80}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{71}{80}\right)\) \(e\left(\frac{39}{80}\right)\) \(e\left(\frac{27}{40}\right)\) \(e\left(\frac{13}{40}\right)\) \(e\left(\frac{9}{80}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{57}{80}\right)\)
\(\chi_{4675}(2077,\cdot)\) \(1\) \(1\) \(e\left(\frac{21}{40}\right)\) \(e\left(\frac{17}{80}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{59}{80}\right)\) \(e\left(\frac{11}{80}\right)\) \(e\left(\frac{23}{40}\right)\) \(e\left(\frac{17}{40}\right)\) \(e\left(\frac{21}{80}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{53}{80}\right)\)
\(\chi_{4675}(2238,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{40}\right)\) \(e\left(\frac{23}{80}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{61}{80}\right)\) \(e\left(\frac{29}{80}\right)\) \(e\left(\frac{17}{40}\right)\) \(e\left(\frac{23}{40}\right)\) \(e\left(\frac{19}{80}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{67}{80}\right)\)
\(\chi_{4675}(2578,\cdot)\) \(1\) \(1\) \(e\left(\frac{27}{40}\right)\) \(e\left(\frac{39}{80}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{13}{80}\right)\) \(e\left(\frac{77}{80}\right)\) \(e\left(\frac{1}{40}\right)\) \(e\left(\frac{39}{40}\right)\) \(e\left(\frac{67}{80}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{51}{80}\right)\)
\(\chi_{4675}(2742,\cdot)\) \(1\) \(1\) \(e\left(\frac{33}{40}\right)\) \(e\left(\frac{21}{80}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{7}{80}\right)\) \(e\left(\frac{23}{80}\right)\) \(e\left(\frac{19}{40}\right)\) \(e\left(\frac{21}{40}\right)\) \(e\left(\frac{73}{80}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{9}{80}\right)\)
\(\chi_{4675}(2748,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{40}\right)\) \(e\left(\frac{7}{80}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{29}{80}\right)\) \(e\left(\frac{61}{80}\right)\) \(e\left(\frac{33}{40}\right)\) \(e\left(\frac{7}{40}\right)\) \(e\left(\frac{51}{80}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{3}{80}\right)\)
\(\chi_{4675}(2887,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{40}\right)\) \(e\left(\frac{73}{80}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{51}{80}\right)\) \(e\left(\frac{19}{80}\right)\) \(e\left(\frac{7}{40}\right)\) \(e\left(\frac{33}{40}\right)\) \(e\left(\frac{29}{80}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{77}{80}\right)\)
\(\chi_{4675}(2902,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{40}\right)\) \(e\left(\frac{77}{80}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{79}{80}\right)\) \(e\left(\frac{31}{80}\right)\) \(e\left(\frac{3}{40}\right)\) \(e\left(\frac{37}{40}\right)\) \(e\left(\frac{1}{80}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{33}{80}\right)\)
\(\chi_{4675}(3083,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{40}\right)\) \(e\left(\frac{31}{80}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{37}{80}\right)\) \(e\left(\frac{53}{80}\right)\) \(e\left(\frac{9}{40}\right)\) \(e\left(\frac{31}{40}\right)\) \(e\left(\frac{43}{80}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{59}{80}\right)\)
\(\chi_{4675}(3338,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{40}\right)\) \(e\left(\frac{63}{80}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{21}{80}\right)\) \(e\left(\frac{69}{80}\right)\) \(e\left(\frac{17}{40}\right)\) \(e\left(\frac{23}{40}\right)\) \(e\left(\frac{59}{80}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{27}{80}\right)\)
\(\chi_{4675}(3437,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{40}\right)\) \(e\left(\frac{33}{80}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{11}{80}\right)\) \(e\left(\frac{59}{80}\right)\) \(e\left(\frac{7}{40}\right)\) \(e\left(\frac{33}{40}\right)\) \(e\left(\frac{69}{80}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{37}{80}\right)\)
\(\chi_{4675}(3567,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{40}\right)\) \(e\left(\frac{41}{80}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{67}{80}\right)\) \(e\left(\frac{3}{80}\right)\) \(e\left(\frac{39}{40}\right)\) \(e\left(\frac{1}{40}\right)\) \(e\left(\frac{13}{80}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{29}{80}\right)\)
\(\chi_{4675}(3678,\cdot)\) \(1\) \(1\) \(e\left(\frac{27}{40}\right)\) \(e\left(\frac{79}{80}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{53}{80}\right)\) \(e\left(\frac{37}{80}\right)\) \(e\left(\frac{1}{40}\right)\) \(e\left(\frac{39}{40}\right)\) \(e\left(\frac{27}{80}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{11}{80}\right)\)
\(\chi_{4675}(3848,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{40}\right)\) \(e\left(\frac{47}{80}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{69}{80}\right)\) \(e\left(\frac{21}{80}\right)\) \(e\left(\frac{33}{40}\right)\) \(e\left(\frac{7}{40}\right)\) \(e\left(\frac{11}{80}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{43}{80}\right)\)
\(\chi_{4675}(4117,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{40}\right)\) \(e\left(\frac{1}{80}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{27}{80}\right)\) \(e\left(\frac{43}{80}\right)\) \(e\left(\frac{39}{40}\right)\) \(e\left(\frac{1}{40}\right)\) \(e\left(\frac{53}{80}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{69}{80}\right)\)
\(\chi_{4675}(4262,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{40}\right)\) \(e\left(\frac{13}{80}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{31}{80}\right)\) \(e\left(\frac{79}{80}\right)\) \(e\left(\frac{27}{40}\right)\) \(e\left(\frac{13}{40}\right)\) \(e\left(\frac{49}{80}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{17}{80}\right)\)