sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(475, base_ring=CyclotomicField(30))
M = H._module
chi = DirichletCharacter(H, M([9,5]))
pari:[g,chi] = znchar(Mod(464,475))
Modulus: | 475 | |
Conductor: | 475 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 30 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ475(69,⋅)
χ475(84,⋅)
χ475(164,⋅)
χ475(179,⋅)
χ475(259,⋅)
χ475(354,⋅)
χ475(369,⋅)
χ475(464,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(77,401) → (e(103),e(61))
a |
−1 | 1 | 2 | 3 | 4 | 6 | 7 | 8 | 9 | 11 | 12 | 13 |
χ475(464,a) |
−1 | 1 | e(157) | e(154) | e(1514) | e(1511) | −1 | e(52) | e(158) | e(54) | e(51) | e(158) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)