Properties

Label 475.z
Modulus $475$
Conductor $475$
Order $30$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(475, base_ring=CyclotomicField(30))
 
M = H._module
 
chi = DirichletCharacter(H, M([27,25]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(69,475))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(475\)
Conductor: \(475\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(30\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{15})\)
Fixed field: 30.0.41334267425810406820389890772071250779617912485264241695404052734375.1

Characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(3\) \(4\) \(6\) \(7\) \(8\) \(9\) \(11\) \(12\) \(13\)
\(\chi_{475}(69,\cdot)\) \(-1\) \(1\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{13}{15}\right)\) \(-1\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{4}{15}\right)\)
\(\chi_{475}(84,\cdot)\) \(-1\) \(1\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{14}{15}\right)\) \(-1\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{2}{15}\right)\)
\(\chi_{475}(164,\cdot)\) \(-1\) \(1\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{1}{15}\right)\) \(-1\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{13}{15}\right)\)
\(\chi_{475}(179,\cdot)\) \(-1\) \(1\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{2}{15}\right)\) \(-1\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{11}{15}\right)\)
\(\chi_{475}(259,\cdot)\) \(-1\) \(1\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{4}{15}\right)\) \(-1\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{7}{15}\right)\)
\(\chi_{475}(354,\cdot)\) \(-1\) \(1\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{7}{15}\right)\) \(-1\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{1}{15}\right)\)
\(\chi_{475}(369,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{8}{15}\right)\) \(-1\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{14}{15}\right)\)
\(\chi_{475}(464,\cdot)\) \(-1\) \(1\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{11}{15}\right)\) \(-1\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{8}{15}\right)\)