Properties

Label 4760.3
Modulus $4760$
Conductor $4760$
Order $48$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4760, base_ring=CyclotomicField(48))
 
M = H._module
 
chi = DirichletCharacter(H, M([24,24,36,8,3]))
 
pari: [g,chi] = znchar(Mod(3,4760))
 

Basic properties

Modulus: \(4760\)
Conductor: \(4760\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(48\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 4760.jx

\(\chi_{4760}(3,\cdot)\) \(\chi_{4760}(227,\cdot)\) \(\chi_{4760}(243,\cdot)\) \(\chi_{4760}(1027,\cdot)\) \(\chi_{4760}(1083,\cdot)\) \(\chi_{4760}(1363,\cdot)\) \(\chi_{4760}(1587,\cdot)\) \(\chi_{4760}(2187,\cdot)\) \(\chi_{4760}(2747,\cdot)\) \(\chi_{4760}(3363,\cdot)\) \(\chi_{4760}(3547,\cdot)\) \(\chi_{4760}(3643,\cdot)\) \(\chi_{4760}(4107,\cdot)\) \(\chi_{4760}(4427,\cdot)\) \(\chi_{4760}(4483,\cdot)\) \(\chi_{4760}(4723,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{48})\)
Fixed field: Number field defined by a degree 48 polynomial

Values on generators

\((1191,2381,2857,1361,3641)\) → \((-1,-1,-i,e\left(\frac{1}{6}\right),e\left(\frac{1}{16}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(9\)\(11\)\(13\)\(19\)\(23\)\(27\)\(29\)\(31\)\(33\)
\( \chi_{ 4760 }(3, a) \) \(1\)\(1\)\(e\left(\frac{23}{48}\right)\)\(e\left(\frac{23}{24}\right)\)\(e\left(\frac{5}{48}\right)\)\(-1\)\(e\left(\frac{5}{24}\right)\)\(e\left(\frac{1}{48}\right)\)\(e\left(\frac{7}{16}\right)\)\(e\left(\frac{13}{16}\right)\)\(e\left(\frac{11}{48}\right)\)\(e\left(\frac{7}{12}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 4760 }(3,a) \;\) at \(\;a = \) e.g. 2