from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4760, base_ring=CyclotomicField(48))
M = H._module
chi = DirichletCharacter(H, M([24,24,36,8,15]))
pari: [g,chi] = znchar(Mod(3643,4760))
Basic properties
Modulus: | \(4760\) | |
Conductor: | \(4760\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(48\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 4760.jx
\(\chi_{4760}(3,\cdot)\) \(\chi_{4760}(227,\cdot)\) \(\chi_{4760}(243,\cdot)\) \(\chi_{4760}(1027,\cdot)\) \(\chi_{4760}(1083,\cdot)\) \(\chi_{4760}(1363,\cdot)\) \(\chi_{4760}(1587,\cdot)\) \(\chi_{4760}(2187,\cdot)\) \(\chi_{4760}(2747,\cdot)\) \(\chi_{4760}(3363,\cdot)\) \(\chi_{4760}(3547,\cdot)\) \(\chi_{4760}(3643,\cdot)\) \(\chi_{4760}(4107,\cdot)\) \(\chi_{4760}(4427,\cdot)\) \(\chi_{4760}(4483,\cdot)\) \(\chi_{4760}(4723,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{48})\) |
Fixed field: | Number field defined by a degree 48 polynomial |
Values on generators
\((1191,2381,2857,1361,3641)\) → \((-1,-1,-i,e\left(\frac{1}{6}\right),e\left(\frac{5}{16}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(3\) | \(9\) | \(11\) | \(13\) | \(19\) | \(23\) | \(27\) | \(29\) | \(31\) | \(33\) |
\( \chi_{ 4760 }(3643, a) \) | \(1\) | \(1\) | \(e\left(\frac{35}{48}\right)\) | \(e\left(\frac{11}{24}\right)\) | \(e\left(\frac{41}{48}\right)\) | \(-1\) | \(e\left(\frac{17}{24}\right)\) | \(e\left(\frac{37}{48}\right)\) | \(e\left(\frac{3}{16}\right)\) | \(e\left(\frac{1}{16}\right)\) | \(e\left(\frac{23}{48}\right)\) | \(e\left(\frac{7}{12}\right)\) |
sage: chi.jacobi_sum(n)