Properties

Label 4788.2029
Modulus 47884788
Conductor 11971197
Order 1818
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4788, base_ring=CyclotomicField(18))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,6,9,11]))
 
pari: [g,chi] = znchar(Mod(2029,4788))
 

Basic properties

Modulus: 47884788
Conductor: 11971197
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1818
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ1197(832,)\chi_{1197}(832,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 4788.kh

χ4788(13,)\chi_{4788}(13,\cdot) χ4788(97,)\chi_{4788}(97,\cdot) χ4788(1105,)\chi_{4788}(1105,\cdot) χ4788(1777,)\chi_{4788}(1777,\cdot) χ4788(2029,)\chi_{4788}(2029,\cdot) χ4788(2617,)\chi_{4788}(2617,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ9)\Q(\zeta_{9})
Fixed field: Number field defined by a degree 18 polynomial

Values on generators

(2395,533,4105,1009)(2395,533,4105,1009)(1,e(13),1,e(1118))(1,e\left(\frac{1}{3}\right),-1,e\left(\frac{11}{18}\right))

First values

aa 1-11155111113131717232325252929313137374141
χ4788(2029,a) \chi_{ 4788 }(2029, a) 1111e(1718)e\left(\frac{17}{18}\right)e(23)e\left(\frac{2}{3}\right)e(29)e\left(\frac{2}{9}\right)e(1118)e\left(\frac{11}{18}\right)e(89)e\left(\frac{8}{9}\right)e(89)e\left(\frac{8}{9}\right)e(1318)e\left(\frac{13}{18}\right)e(13)e\left(\frac{1}{3}\right)1-1e(19)e\left(\frac{1}{9}\right)
sage: chi.jacobi_sum(n)
 
χ4788(2029,a)   \chi_{ 4788 }(2029,a) \; at   a=\;a = e.g. 2