Properties

Label 5239.1117
Modulus $5239$
Conductor $169$
Order $26$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5239, base_ring=CyclotomicField(26))
 
M = H._module
 
chi = DirichletCharacter(H, M([25,0]))
 
pari: [g,chi] = znchar(Mod(1117,5239))
 

Basic properties

Modulus: \(5239\)
Conductor: \(169\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(26\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{169}(103,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 5239.bq

\(\chi_{5239}(311,\cdot)\) \(\chi_{5239}(714,\cdot)\) \(\chi_{5239}(1117,\cdot)\) \(\chi_{5239}(1923,\cdot)\) \(\chi_{5239}(2326,\cdot)\) \(\chi_{5239}(2729,\cdot)\) \(\chi_{5239}(3132,\cdot)\) \(\chi_{5239}(3535,\cdot)\) \(\chi_{5239}(3938,\cdot)\) \(\chi_{5239}(4341,\cdot)\) \(\chi_{5239}(4744,\cdot)\) \(\chi_{5239}(5147,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{13})\)
Fixed field: 26.26.3830224792147131369362629348887201408953937846517364173.1

Values on generators

\((1861,1522)\) → \((e\left(\frac{25}{26}\right),1)\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(7\)\(8\)\(9\)\(10\)\(11\)
\( \chi_{ 5239 }(1117, a) \) \(1\)\(1\)\(e\left(\frac{25}{26}\right)\)\(e\left(\frac{3}{13}\right)\)\(e\left(\frac{12}{13}\right)\)\(e\left(\frac{17}{26}\right)\)\(e\left(\frac{5}{26}\right)\)\(e\left(\frac{23}{26}\right)\)\(e\left(\frac{23}{26}\right)\)\(e\left(\frac{6}{13}\right)\)\(e\left(\frac{8}{13}\right)\)\(e\left(\frac{1}{26}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 5239 }(1117,a) \;\) at \(\;a = \) e.g. 2