from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(5239, base_ring=CyclotomicField(26))
M = H._module
chi = DirichletCharacter(H, M([9,0]))
pari: [g,chi] = znchar(Mod(5147,5239))
Basic properties
Modulus: | \(5239\) | |
Conductor: | \(169\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(26\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{169}(77,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 5239.bq
\(\chi_{5239}(311,\cdot)\) \(\chi_{5239}(714,\cdot)\) \(\chi_{5239}(1117,\cdot)\) \(\chi_{5239}(1923,\cdot)\) \(\chi_{5239}(2326,\cdot)\) \(\chi_{5239}(2729,\cdot)\) \(\chi_{5239}(3132,\cdot)\) \(\chi_{5239}(3535,\cdot)\) \(\chi_{5239}(3938,\cdot)\) \(\chi_{5239}(4341,\cdot)\) \(\chi_{5239}(4744,\cdot)\) \(\chi_{5239}(5147,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{13})\) |
Fixed field: | 26.26.3830224792147131369362629348887201408953937846517364173.1 |
Values on generators
\((1861,1522)\) → \((e\left(\frac{9}{26}\right),1)\)
First values
\(a\) | \(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(11\) |
\( \chi_{ 5239 }(5147, a) \) | \(1\) | \(1\) | \(e\left(\frac{9}{26}\right)\) | \(e\left(\frac{12}{13}\right)\) | \(e\left(\frac{9}{13}\right)\) | \(e\left(\frac{3}{26}\right)\) | \(e\left(\frac{7}{26}\right)\) | \(e\left(\frac{1}{26}\right)\) | \(e\left(\frac{1}{26}\right)\) | \(e\left(\frac{11}{13}\right)\) | \(e\left(\frac{6}{13}\right)\) | \(e\left(\frac{17}{26}\right)\) |
sage: chi.jacobi_sum(n)