sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(5400, base_ring=CyclotomicField(180))
M = H._module
chi = DirichletCharacter(H, M([90,90,20,63]))
pari:[g,chi] = znchar(Mod(1003,5400))
Modulus: | 5400 | |
Conductor: | 5400 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 180 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ5400(67,⋅)
χ5400(187,⋅)
χ5400(283,⋅)
χ5400(403,⋅)
χ5400(427,⋅)
χ5400(547,⋅)
χ5400(763,⋅)
χ5400(787,⋅)
χ5400(1003,⋅)
χ5400(1123,⋅)
χ5400(1147,⋅)
χ5400(1267,⋅)
χ5400(1363,⋅)
χ5400(1483,⋅)
χ5400(1627,⋅)
χ5400(1723,⋅)
χ5400(1867,⋅)
χ5400(1987,⋅)
χ5400(2083,⋅)
χ5400(2203,⋅)
χ5400(2227,⋅)
χ5400(2347,⋅)
χ5400(2563,⋅)
χ5400(2587,⋅)
χ5400(2803,⋅)
χ5400(2923,⋅)
χ5400(2947,⋅)
χ5400(3067,⋅)
χ5400(3163,⋅)
χ5400(3283,⋅)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(1351,2701,1001,2377) → (−1,−1,e(91),e(207))
a |
−1 | 1 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 |
χ5400(1003,a) |
1 | 1 | e(361) | e(452) | e(1807) | e(6013) | e(3019) | e(180103) | e(4514) | e(9047) | e(6019) | e(4513) |
sage:chi.jacobi_sum(n)