Properties

Label 5400.1003
Modulus $5400$
Conductor $5400$
Order $180$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5400, base_ring=CyclotomicField(180))
 
M = H._module
 
chi = DirichletCharacter(H, M([90,90,20,63]))
 
pari: [g,chi] = znchar(Mod(1003,5400))
 

Basic properties

Modulus: \(5400\)
Conductor: \(5400\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(180\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 5400.fg

\(\chi_{5400}(67,\cdot)\) \(\chi_{5400}(187,\cdot)\) \(\chi_{5400}(283,\cdot)\) \(\chi_{5400}(403,\cdot)\) \(\chi_{5400}(427,\cdot)\) \(\chi_{5400}(547,\cdot)\) \(\chi_{5400}(763,\cdot)\) \(\chi_{5400}(787,\cdot)\) \(\chi_{5400}(1003,\cdot)\) \(\chi_{5400}(1123,\cdot)\) \(\chi_{5400}(1147,\cdot)\) \(\chi_{5400}(1267,\cdot)\) \(\chi_{5400}(1363,\cdot)\) \(\chi_{5400}(1483,\cdot)\) \(\chi_{5400}(1627,\cdot)\) \(\chi_{5400}(1723,\cdot)\) \(\chi_{5400}(1867,\cdot)\) \(\chi_{5400}(1987,\cdot)\) \(\chi_{5400}(2083,\cdot)\) \(\chi_{5400}(2203,\cdot)\) \(\chi_{5400}(2227,\cdot)\) \(\chi_{5400}(2347,\cdot)\) \(\chi_{5400}(2563,\cdot)\) \(\chi_{5400}(2587,\cdot)\) \(\chi_{5400}(2803,\cdot)\) \(\chi_{5400}(2923,\cdot)\) \(\chi_{5400}(2947,\cdot)\) \(\chi_{5400}(3067,\cdot)\) \(\chi_{5400}(3163,\cdot)\) \(\chi_{5400}(3283,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{180})$
Fixed field: Number field defined by a degree 180 polynomial (not computed)

Values on generators

\((1351,2701,1001,2377)\) → \((-1,-1,e\left(\frac{1}{9}\right),e\left(\frac{7}{20}\right))\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)
\( \chi_{ 5400 }(1003, a) \) \(1\)\(1\)\(e\left(\frac{1}{36}\right)\)\(e\left(\frac{2}{45}\right)\)\(e\left(\frac{7}{180}\right)\)\(e\left(\frac{13}{60}\right)\)\(e\left(\frac{19}{30}\right)\)\(e\left(\frac{103}{180}\right)\)\(e\left(\frac{14}{45}\right)\)\(e\left(\frac{47}{90}\right)\)\(e\left(\frac{19}{60}\right)\)\(e\left(\frac{13}{45}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 5400 }(1003,a) \;\) at \(\;a = \) e.g. 2