Properties

Label 5400.1003
Modulus 54005400
Conductor 54005400
Order 180180
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5400, base_ring=CyclotomicField(180)) M = H._module chi = DirichletCharacter(H, M([90,90,20,63]))
 
Copy content pari:[g,chi] = znchar(Mod(1003,5400))
 

Basic properties

Modulus: 54005400
Conductor: 54005400
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: 180180
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 5400.fg

χ5400(67,)\chi_{5400}(67,\cdot) χ5400(187,)\chi_{5400}(187,\cdot) χ5400(283,)\chi_{5400}(283,\cdot) χ5400(403,)\chi_{5400}(403,\cdot) χ5400(427,)\chi_{5400}(427,\cdot) χ5400(547,)\chi_{5400}(547,\cdot) χ5400(763,)\chi_{5400}(763,\cdot) χ5400(787,)\chi_{5400}(787,\cdot) χ5400(1003,)\chi_{5400}(1003,\cdot) χ5400(1123,)\chi_{5400}(1123,\cdot) χ5400(1147,)\chi_{5400}(1147,\cdot) χ5400(1267,)\chi_{5400}(1267,\cdot) χ5400(1363,)\chi_{5400}(1363,\cdot) χ5400(1483,)\chi_{5400}(1483,\cdot) χ5400(1627,)\chi_{5400}(1627,\cdot) χ5400(1723,)\chi_{5400}(1723,\cdot) χ5400(1867,)\chi_{5400}(1867,\cdot) χ5400(1987,)\chi_{5400}(1987,\cdot) χ5400(2083,)\chi_{5400}(2083,\cdot) χ5400(2203,)\chi_{5400}(2203,\cdot) χ5400(2227,)\chi_{5400}(2227,\cdot) χ5400(2347,)\chi_{5400}(2347,\cdot) χ5400(2563,)\chi_{5400}(2563,\cdot) χ5400(2587,)\chi_{5400}(2587,\cdot) χ5400(2803,)\chi_{5400}(2803,\cdot) χ5400(2923,)\chi_{5400}(2923,\cdot) χ5400(2947,)\chi_{5400}(2947,\cdot) χ5400(3067,)\chi_{5400}(3067,\cdot) χ5400(3163,)\chi_{5400}(3163,\cdot) χ5400(3283,)\chi_{5400}(3283,\cdot) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ180)\Q(\zeta_{180})
Fixed field: Number field defined by a degree 180 polynomial (not computed)

Values on generators

(1351,2701,1001,2377)(1351,2701,1001,2377)(1,1,e(19),e(720))(-1,-1,e\left(\frac{1}{9}\right),e\left(\frac{7}{20}\right))

First values

aa 1-11177111113131717191923232929313137374141
χ5400(1003,a) \chi_{ 5400 }(1003, a) 1111e(136)e\left(\frac{1}{36}\right)e(245)e\left(\frac{2}{45}\right)e(7180)e\left(\frac{7}{180}\right)e(1360)e\left(\frac{13}{60}\right)e(1930)e\left(\frac{19}{30}\right)e(103180)e\left(\frac{103}{180}\right)e(1445)e\left(\frac{14}{45}\right)e(4790)e\left(\frac{47}{90}\right)e(1960)e\left(\frac{19}{60}\right)e(1345)e\left(\frac{13}{45}\right)
Copy content sage:chi.jacobi_sum(n)
 
χ5400(1003,a)   \chi_{ 5400 }(1003,a) \; at   a=\;a = e.g. 2