from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(5400, base_ring=CyclotomicField(180))
M = H._module
chi = DirichletCharacter(H, M([90,90,80,117]))
chi.galois_orbit()
[g,chi] = znchar(Mod(67,5400))
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Basic properties
Modulus: | \(5400\) | |
Conductor: | \(5400\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(180\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Related number fields
Field of values: | $\Q(\zeta_{180})$ |
Fixed field: | Number field defined by a degree 180 polynomial (not computed) |
First 31 of 48 characters in Galois orbit
Character | \(-1\) | \(1\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{5400}(67,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{31}{36}\right)\) | \(e\left(\frac{8}{45}\right)\) | \(e\left(\frac{73}{180}\right)\) | \(e\left(\frac{7}{60}\right)\) | \(e\left(\frac{1}{30}\right)\) | \(e\left(\frac{97}{180}\right)\) | \(e\left(\frac{11}{45}\right)\) | \(e\left(\frac{53}{90}\right)\) | \(e\left(\frac{1}{60}\right)\) | \(e\left(\frac{7}{45}\right)\) |
\(\chi_{5400}(187,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{23}{36}\right)\) | \(e\left(\frac{19}{45}\right)\) | \(e\left(\frac{89}{180}\right)\) | \(e\left(\frac{11}{60}\right)\) | \(e\left(\frac{23}{30}\right)\) | \(e\left(\frac{101}{180}\right)\) | \(e\left(\frac{43}{45}\right)\) | \(e\left(\frac{19}{90}\right)\) | \(e\left(\frac{53}{60}\right)\) | \(e\left(\frac{11}{45}\right)\) |
\(\chi_{5400}(283,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{13}{36}\right)\) | \(e\left(\frac{8}{45}\right)\) | \(e\left(\frac{163}{180}\right)\) | \(e\left(\frac{37}{60}\right)\) | \(e\left(\frac{1}{30}\right)\) | \(e\left(\frac{7}{180}\right)\) | \(e\left(\frac{11}{45}\right)\) | \(e\left(\frac{53}{90}\right)\) | \(e\left(\frac{31}{60}\right)\) | \(e\left(\frac{7}{45}\right)\) |
\(\chi_{5400}(403,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{5}{36}\right)\) | \(e\left(\frac{37}{45}\right)\) | \(e\left(\frac{107}{180}\right)\) | \(e\left(\frac{53}{60}\right)\) | \(e\left(\frac{29}{30}\right)\) | \(e\left(\frac{83}{180}\right)\) | \(e\left(\frac{34}{45}\right)\) | \(e\left(\frac{37}{90}\right)\) | \(e\left(\frac{59}{60}\right)\) | \(e\left(\frac{38}{45}\right)\) |
\(\chi_{5400}(427,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{7}{36}\right)\) | \(e\left(\frac{41}{45}\right)\) | \(e\left(\frac{121}{180}\right)\) | \(e\left(\frac{19}{60}\right)\) | \(e\left(\frac{7}{30}\right)\) | \(e\left(\frac{109}{180}\right)\) | \(e\left(\frac{17}{45}\right)\) | \(e\left(\frac{41}{90}\right)\) | \(e\left(\frac{37}{60}\right)\) | \(e\left(\frac{19}{45}\right)\) |
\(\chi_{5400}(547,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{35}{36}\right)\) | \(e\left(\frac{7}{45}\right)\) | \(e\left(\frac{137}{180}\right)\) | \(e\left(\frac{23}{60}\right)\) | \(e\left(\frac{29}{30}\right)\) | \(e\left(\frac{113}{180}\right)\) | \(e\left(\frac{4}{45}\right)\) | \(e\left(\frac{7}{90}\right)\) | \(e\left(\frac{29}{60}\right)\) | \(e\left(\frac{23}{45}\right)\) |
\(\chi_{5400}(763,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{17}{36}\right)\) | \(e\left(\frac{34}{45}\right)\) | \(e\left(\frac{119}{180}\right)\) | \(e\left(\frac{41}{60}\right)\) | \(e\left(\frac{23}{30}\right)\) | \(e\left(\frac{131}{180}\right)\) | \(e\left(\frac{13}{45}\right)\) | \(e\left(\frac{79}{90}\right)\) | \(e\left(\frac{23}{60}\right)\) | \(e\left(\frac{41}{45}\right)\) |
\(\chi_{5400}(787,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{19}{36}\right)\) | \(e\left(\frac{29}{45}\right)\) | \(e\left(\frac{169}{180}\right)\) | \(e\left(\frac{31}{60}\right)\) | \(e\left(\frac{13}{30}\right)\) | \(e\left(\frac{121}{180}\right)\) | \(e\left(\frac{23}{45}\right)\) | \(e\left(\frac{29}{90}\right)\) | \(e\left(\frac{13}{60}\right)\) | \(e\left(\frac{31}{45}\right)\) |
\(\chi_{5400}(1003,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{1}{36}\right)\) | \(e\left(\frac{2}{45}\right)\) | \(e\left(\frac{7}{180}\right)\) | \(e\left(\frac{13}{60}\right)\) | \(e\left(\frac{19}{30}\right)\) | \(e\left(\frac{103}{180}\right)\) | \(e\left(\frac{14}{45}\right)\) | \(e\left(\frac{47}{90}\right)\) | \(e\left(\frac{19}{60}\right)\) | \(e\left(\frac{13}{45}\right)\) |
\(\chi_{5400}(1123,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{29}{36}\right)\) | \(e\left(\frac{31}{45}\right)\) | \(e\left(\frac{131}{180}\right)\) | \(e\left(\frac{29}{60}\right)\) | \(e\left(\frac{17}{30}\right)\) | \(e\left(\frac{179}{180}\right)\) | \(e\left(\frac{37}{45}\right)\) | \(e\left(\frac{31}{90}\right)\) | \(e\left(\frac{47}{60}\right)\) | \(e\left(\frac{44}{45}\right)\) |
\(\chi_{5400}(1147,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{31}{36}\right)\) | \(e\left(\frac{17}{45}\right)\) | \(e\left(\frac{37}{180}\right)\) | \(e\left(\frac{43}{60}\right)\) | \(e\left(\frac{19}{30}\right)\) | \(e\left(\frac{133}{180}\right)\) | \(e\left(\frac{29}{45}\right)\) | \(e\left(\frac{17}{90}\right)\) | \(e\left(\frac{49}{60}\right)\) | \(e\left(\frac{43}{45}\right)\) |
\(\chi_{5400}(1267,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{23}{36}\right)\) | \(e\left(\frac{28}{45}\right)\) | \(e\left(\frac{53}{180}\right)\) | \(e\left(\frac{47}{60}\right)\) | \(e\left(\frac{11}{30}\right)\) | \(e\left(\frac{137}{180}\right)\) | \(e\left(\frac{16}{45}\right)\) | \(e\left(\frac{73}{90}\right)\) | \(e\left(\frac{41}{60}\right)\) | \(e\left(\frac{2}{45}\right)\) |
\(\chi_{5400}(1363,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{13}{36}\right)\) | \(e\left(\frac{44}{45}\right)\) | \(e\left(\frac{19}{180}\right)\) | \(e\left(\frac{1}{60}\right)\) | \(e\left(\frac{13}{30}\right)\) | \(e\left(\frac{151}{180}\right)\) | \(e\left(\frac{38}{45}\right)\) | \(e\left(\frac{89}{90}\right)\) | \(e\left(\frac{43}{60}\right)\) | \(e\left(\frac{16}{45}\right)\) |
\(\chi_{5400}(1483,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{5}{36}\right)\) | \(e\left(\frac{28}{45}\right)\) | \(e\left(\frac{143}{180}\right)\) | \(e\left(\frac{17}{60}\right)\) | \(e\left(\frac{11}{30}\right)\) | \(e\left(\frac{47}{180}\right)\) | \(e\left(\frac{16}{45}\right)\) | \(e\left(\frac{73}{90}\right)\) | \(e\left(\frac{11}{60}\right)\) | \(e\left(\frac{2}{45}\right)\) |
\(\chi_{5400}(1627,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{35}{36}\right)\) | \(e\left(\frac{16}{45}\right)\) | \(e\left(\frac{101}{180}\right)\) | \(e\left(\frac{59}{60}\right)\) | \(e\left(\frac{17}{30}\right)\) | \(e\left(\frac{149}{180}\right)\) | \(e\left(\frac{22}{45}\right)\) | \(e\left(\frac{61}{90}\right)\) | \(e\left(\frac{17}{60}\right)\) | \(e\left(\frac{14}{45}\right)\) |
\(\chi_{5400}(1723,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{25}{36}\right)\) | \(e\left(\frac{41}{45}\right)\) | \(e\left(\frac{31}{180}\right)\) | \(e\left(\frac{49}{60}\right)\) | \(e\left(\frac{7}{30}\right)\) | \(e\left(\frac{19}{180}\right)\) | \(e\left(\frac{17}{45}\right)\) | \(e\left(\frac{41}{90}\right)\) | \(e\left(\frac{7}{60}\right)\) | \(e\left(\frac{19}{45}\right)\) |
\(\chi_{5400}(1867,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{19}{36}\right)\) | \(e\left(\frac{38}{45}\right)\) | \(e\left(\frac{133}{180}\right)\) | \(e\left(\frac{7}{60}\right)\) | \(e\left(\frac{1}{30}\right)\) | \(e\left(\frac{157}{180}\right)\) | \(e\left(\frac{41}{45}\right)\) | \(e\left(\frac{83}{90}\right)\) | \(e\left(\frac{1}{60}\right)\) | \(e\left(\frac{22}{45}\right)\) |
\(\chi_{5400}(1987,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{4}{45}\right)\) | \(e\left(\frac{149}{180}\right)\) | \(e\left(\frac{11}{60}\right)\) | \(e\left(\frac{23}{30}\right)\) | \(e\left(\frac{161}{180}\right)\) | \(e\left(\frac{28}{45}\right)\) | \(e\left(\frac{49}{90}\right)\) | \(e\left(\frac{53}{60}\right)\) | \(e\left(\frac{26}{45}\right)\) |
\(\chi_{5400}(2083,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{1}{36}\right)\) | \(e\left(\frac{38}{45}\right)\) | \(e\left(\frac{43}{180}\right)\) | \(e\left(\frac{37}{60}\right)\) | \(e\left(\frac{1}{30}\right)\) | \(e\left(\frac{67}{180}\right)\) | \(e\left(\frac{41}{45}\right)\) | \(e\left(\frac{83}{90}\right)\) | \(e\left(\frac{31}{60}\right)\) | \(e\left(\frac{22}{45}\right)\) |
\(\chi_{5400}(2203,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{29}{36}\right)\) | \(e\left(\frac{22}{45}\right)\) | \(e\left(\frac{167}{180}\right)\) | \(e\left(\frac{53}{60}\right)\) | \(e\left(\frac{29}{30}\right)\) | \(e\left(\frac{143}{180}\right)\) | \(e\left(\frac{19}{45}\right)\) | \(e\left(\frac{67}{90}\right)\) | \(e\left(\frac{59}{60}\right)\) | \(e\left(\frac{8}{45}\right)\) |
\(\chi_{5400}(2227,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{31}{36}\right)\) | \(e\left(\frac{26}{45}\right)\) | \(e\left(\frac{1}{180}\right)\) | \(e\left(\frac{19}{60}\right)\) | \(e\left(\frac{7}{30}\right)\) | \(e\left(\frac{169}{180}\right)\) | \(e\left(\frac{2}{45}\right)\) | \(e\left(\frac{71}{90}\right)\) | \(e\left(\frac{37}{60}\right)\) | \(e\left(\frac{34}{45}\right)\) |
\(\chi_{5400}(2347,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{23}{36}\right)\) | \(e\left(\frac{37}{45}\right)\) | \(e\left(\frac{17}{180}\right)\) | \(e\left(\frac{23}{60}\right)\) | \(e\left(\frac{29}{30}\right)\) | \(e\left(\frac{173}{180}\right)\) | \(e\left(\frac{34}{45}\right)\) | \(e\left(\frac{37}{90}\right)\) | \(e\left(\frac{29}{60}\right)\) | \(e\left(\frac{38}{45}\right)\) |
\(\chi_{5400}(2563,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{5}{36}\right)\) | \(e\left(\frac{19}{45}\right)\) | \(e\left(\frac{179}{180}\right)\) | \(e\left(\frac{41}{60}\right)\) | \(e\left(\frac{23}{30}\right)\) | \(e\left(\frac{11}{180}\right)\) | \(e\left(\frac{43}{45}\right)\) | \(e\left(\frac{19}{90}\right)\) | \(e\left(\frac{23}{60}\right)\) | \(e\left(\frac{11}{45}\right)\) |
\(\chi_{5400}(2587,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{7}{36}\right)\) | \(e\left(\frac{14}{45}\right)\) | \(e\left(\frac{49}{180}\right)\) | \(e\left(\frac{31}{60}\right)\) | \(e\left(\frac{13}{30}\right)\) | \(e\left(\frac{1}{180}\right)\) | \(e\left(\frac{8}{45}\right)\) | \(e\left(\frac{59}{90}\right)\) | \(e\left(\frac{13}{60}\right)\) | \(e\left(\frac{1}{45}\right)\) |
\(\chi_{5400}(2803,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{25}{36}\right)\) | \(e\left(\frac{32}{45}\right)\) | \(e\left(\frac{67}{180}\right)\) | \(e\left(\frac{13}{60}\right)\) | \(e\left(\frac{19}{30}\right)\) | \(e\left(\frac{163}{180}\right)\) | \(e\left(\frac{44}{45}\right)\) | \(e\left(\frac{77}{90}\right)\) | \(e\left(\frac{19}{60}\right)\) | \(e\left(\frac{28}{45}\right)\) |
\(\chi_{5400}(2923,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{17}{36}\right)\) | \(e\left(\frac{16}{45}\right)\) | \(e\left(\frac{11}{180}\right)\) | \(e\left(\frac{29}{60}\right)\) | \(e\left(\frac{17}{30}\right)\) | \(e\left(\frac{59}{180}\right)\) | \(e\left(\frac{22}{45}\right)\) | \(e\left(\frac{61}{90}\right)\) | \(e\left(\frac{47}{60}\right)\) | \(e\left(\frac{14}{45}\right)\) |
\(\chi_{5400}(2947,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{19}{36}\right)\) | \(e\left(\frac{2}{45}\right)\) | \(e\left(\frac{97}{180}\right)\) | \(e\left(\frac{43}{60}\right)\) | \(e\left(\frac{19}{30}\right)\) | \(e\left(\frac{13}{180}\right)\) | \(e\left(\frac{14}{45}\right)\) | \(e\left(\frac{47}{90}\right)\) | \(e\left(\frac{49}{60}\right)\) | \(e\left(\frac{13}{45}\right)\) |
\(\chi_{5400}(3067,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{13}{45}\right)\) | \(e\left(\frac{113}{180}\right)\) | \(e\left(\frac{47}{60}\right)\) | \(e\left(\frac{11}{30}\right)\) | \(e\left(\frac{17}{180}\right)\) | \(e\left(\frac{1}{45}\right)\) | \(e\left(\frac{13}{90}\right)\) | \(e\left(\frac{41}{60}\right)\) | \(e\left(\frac{17}{45}\right)\) |
\(\chi_{5400}(3163,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{1}{36}\right)\) | \(e\left(\frac{29}{45}\right)\) | \(e\left(\frac{79}{180}\right)\) | \(e\left(\frac{1}{60}\right)\) | \(e\left(\frac{13}{30}\right)\) | \(e\left(\frac{31}{180}\right)\) | \(e\left(\frac{23}{45}\right)\) | \(e\left(\frac{29}{90}\right)\) | \(e\left(\frac{43}{60}\right)\) | \(e\left(\frac{31}{45}\right)\) |
\(\chi_{5400}(3283,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{29}{36}\right)\) | \(e\left(\frac{13}{45}\right)\) | \(e\left(\frac{23}{180}\right)\) | \(e\left(\frac{17}{60}\right)\) | \(e\left(\frac{11}{30}\right)\) | \(e\left(\frac{107}{180}\right)\) | \(e\left(\frac{1}{45}\right)\) | \(e\left(\frac{13}{90}\right)\) | \(e\left(\frac{11}{60}\right)\) | \(e\left(\frac{17}{45}\right)\) |
\(\chi_{5400}(3427,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{23}{36}\right)\) | \(e\left(\frac{1}{45}\right)\) | \(e\left(\frac{161}{180}\right)\) | \(e\left(\frac{59}{60}\right)\) | \(e\left(\frac{17}{30}\right)\) | \(e\left(\frac{29}{180}\right)\) | \(e\left(\frac{7}{45}\right)\) | \(e\left(\frac{1}{90}\right)\) | \(e\left(\frac{17}{60}\right)\) | \(e\left(\frac{29}{45}\right)\) |