Properties

Label 5400.3311
Modulus $5400$
Conductor $900$
Order $30$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5400, base_ring=CyclotomicField(30))
 
M = H._module
 
chi = DirichletCharacter(H, M([15,0,25,24]))
 
pari: [g,chi] = znchar(Mod(3311,5400))
 

Basic properties

Modulus: \(5400\)
Conductor: \(900\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(30\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{900}(311,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 5400.dz

\(\chi_{5400}(71,\cdot)\) \(\chi_{5400}(791,\cdot)\) \(\chi_{5400}(1871,\cdot)\) \(\chi_{5400}(2231,\cdot)\) \(\chi_{5400}(3311,\cdot)\) \(\chi_{5400}(4031,\cdot)\) \(\chi_{5400}(4391,\cdot)\) \(\chi_{5400}(5111,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{15})\)
Fixed field: Number field defined by a degree 30 polynomial

Values on generators

\((1351,2701,1001,2377)\) → \((-1,1,e\left(\frac{5}{6}\right),e\left(\frac{4}{5}\right))\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)
\( \chi_{ 5400 }(3311, a) \) \(1\)\(1\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{2}{15}\right)\)\(e\left(\frac{13}{15}\right)\)\(e\left(\frac{9}{10}\right)\)\(e\left(\frac{9}{10}\right)\)\(e\left(\frac{7}{15}\right)\)\(e\left(\frac{13}{30}\right)\)\(e\left(\frac{17}{30}\right)\)\(e\left(\frac{1}{5}\right)\)\(e\left(\frac{11}{30}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 5400 }(3311,a) \;\) at \(\;a = \) e.g. 2