from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(5400, base_ring=CyclotomicField(30))
M = H._module
chi = DirichletCharacter(H, M([15,0,25,24]))
pari: [g,chi] = znchar(Mod(3311,5400))
Basic properties
Modulus: | \(5400\) | |
Conductor: | \(900\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(30\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{900}(311,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | no | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 5400.dz
\(\chi_{5400}(71,\cdot)\) \(\chi_{5400}(791,\cdot)\) \(\chi_{5400}(1871,\cdot)\) \(\chi_{5400}(2231,\cdot)\) \(\chi_{5400}(3311,\cdot)\) \(\chi_{5400}(4031,\cdot)\) \(\chi_{5400}(4391,\cdot)\) \(\chi_{5400}(5111,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{15})\) |
Fixed field: | Number field defined by a degree 30 polynomial |
Values on generators
\((1351,2701,1001,2377)\) → \((-1,1,e\left(\frac{5}{6}\right),e\left(\frac{4}{5}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) |
\( \chi_{ 5400 }(3311, a) \) | \(1\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{15}\right)\) | \(e\left(\frac{13}{15}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{7}{15}\right)\) | \(e\left(\frac{13}{30}\right)\) | \(e\left(\frac{17}{30}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{11}{30}\right)\) |
sage: chi.jacobi_sum(n)