Properties

Label 5400.dz
Modulus $5400$
Conductor $900$
Order $30$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5400, base_ring=CyclotomicField(30))
 
M = H._module
 
chi = DirichletCharacter(H, M([15,0,25,18]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(71,5400))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(5400\)
Conductor: \(900\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(30\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 900.br
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{15})\)
Fixed field: Number field defined by a degree 30 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(7\) \(11\) \(13\) \(17\) \(19\) \(23\) \(29\) \(31\) \(37\) \(41\)
\(\chi_{5400}(71,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{17}{30}\right)\)
\(\chi_{5400}(791,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{17}{30}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{19}{30}\right)\)
\(\chi_{5400}(1871,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{11}{30}\right)\) \(e\left(\frac{19}{30}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{7}{30}\right)\)
\(\chi_{5400}(2231,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{19}{30}\right)\) \(e\left(\frac{11}{30}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{23}{30}\right)\)
\(\chi_{5400}(3311,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{17}{30}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{11}{30}\right)\)
\(\chi_{5400}(4031,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{13}{30}\right)\)
\(\chi_{5400}(4391,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{29}{30}\right)\)
\(\chi_{5400}(5111,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{1}{30}\right)\)