Properties

Label 5415.bt
Modulus $5415$
Conductor $1805$
Order $76$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5415, base_ring=CyclotomicField(76))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,19,10]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(37,5415))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(5415\)
Conductor: \(1805\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(76\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 1805.x
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{76})$
Fixed field: Number field defined by a degree 76 polynomial

First 31 of 36 characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(4\) \(7\) \(8\) \(11\) \(13\) \(14\) \(16\) \(17\) \(22\)
\(\chi_{5415}(37,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{76}\right)\) \(e\left(\frac{29}{38}\right)\) \(e\left(\frac{75}{76}\right)\) \(e\left(\frac{11}{76}\right)\) \(e\left(\frac{8}{19}\right)\) \(e\left(\frac{3}{76}\right)\) \(e\left(\frac{7}{19}\right)\) \(e\left(\frac{10}{19}\right)\) \(e\left(\frac{75}{76}\right)\) \(e\left(\frac{61}{76}\right)\)
\(\chi_{5415}(208,\cdot)\) \(1\) \(1\) \(e\left(\frac{55}{76}\right)\) \(e\left(\frac{17}{38}\right)\) \(e\left(\frac{61}{76}\right)\) \(e\left(\frac{13}{76}\right)\) \(e\left(\frac{6}{19}\right)\) \(e\left(\frac{45}{76}\right)\) \(e\left(\frac{10}{19}\right)\) \(e\left(\frac{17}{19}\right)\) \(e\left(\frac{61}{76}\right)\) \(e\left(\frac{3}{76}\right)\)
\(\chi_{5415}(322,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{76}\right)\) \(e\left(\frac{9}{38}\right)\) \(e\left(\frac{39}{76}\right)\) \(e\left(\frac{27}{76}\right)\) \(e\left(\frac{11}{19}\right)\) \(e\left(\frac{35}{76}\right)\) \(e\left(\frac{12}{19}\right)\) \(e\left(\frac{9}{19}\right)\) \(e\left(\frac{39}{76}\right)\) \(e\left(\frac{53}{76}\right)\)
\(\chi_{5415}(493,\cdot)\) \(1\) \(1\) \(e\left(\frac{35}{76}\right)\) \(e\left(\frac{35}{38}\right)\) \(e\left(\frac{25}{76}\right)\) \(e\left(\frac{29}{76}\right)\) \(e\left(\frac{9}{19}\right)\) \(e\left(\frac{1}{76}\right)\) \(e\left(\frac{15}{19}\right)\) \(e\left(\frac{16}{19}\right)\) \(e\left(\frac{25}{76}\right)\) \(e\left(\frac{71}{76}\right)\)
\(\chi_{5415}(607,\cdot)\) \(1\) \(1\) \(e\left(\frac{65}{76}\right)\) \(e\left(\frac{27}{38}\right)\) \(e\left(\frac{3}{76}\right)\) \(e\left(\frac{43}{76}\right)\) \(e\left(\frac{14}{19}\right)\) \(e\left(\frac{67}{76}\right)\) \(e\left(\frac{17}{19}\right)\) \(e\left(\frac{8}{19}\right)\) \(e\left(\frac{3}{76}\right)\) \(e\left(\frac{45}{76}\right)\)
\(\chi_{5415}(778,\cdot)\) \(1\) \(1\) \(e\left(\frac{15}{76}\right)\) \(e\left(\frac{15}{38}\right)\) \(e\left(\frac{65}{76}\right)\) \(e\left(\frac{45}{76}\right)\) \(e\left(\frac{12}{19}\right)\) \(e\left(\frac{33}{76}\right)\) \(e\left(\frac{1}{19}\right)\) \(e\left(\frac{15}{19}\right)\) \(e\left(\frac{65}{76}\right)\) \(e\left(\frac{63}{76}\right)\)
\(\chi_{5415}(892,\cdot)\) \(1\) \(1\) \(e\left(\frac{45}{76}\right)\) \(e\left(\frac{7}{38}\right)\) \(e\left(\frac{43}{76}\right)\) \(e\left(\frac{59}{76}\right)\) \(e\left(\frac{17}{19}\right)\) \(e\left(\frac{23}{76}\right)\) \(e\left(\frac{3}{19}\right)\) \(e\left(\frac{7}{19}\right)\) \(e\left(\frac{43}{76}\right)\) \(e\left(\frac{37}{76}\right)\)
\(\chi_{5415}(1063,\cdot)\) \(1\) \(1\) \(e\left(\frac{71}{76}\right)\) \(e\left(\frac{33}{38}\right)\) \(e\left(\frac{29}{76}\right)\) \(e\left(\frac{61}{76}\right)\) \(e\left(\frac{15}{19}\right)\) \(e\left(\frac{65}{76}\right)\) \(e\left(\frac{6}{19}\right)\) \(e\left(\frac{14}{19}\right)\) \(e\left(\frac{29}{76}\right)\) \(e\left(\frac{55}{76}\right)\)
\(\chi_{5415}(1177,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{76}\right)\) \(e\left(\frac{25}{38}\right)\) \(e\left(\frac{7}{76}\right)\) \(e\left(\frac{75}{76}\right)\) \(e\left(\frac{1}{19}\right)\) \(e\left(\frac{55}{76}\right)\) \(e\left(\frac{8}{19}\right)\) \(e\left(\frac{6}{19}\right)\) \(e\left(\frac{7}{76}\right)\) \(e\left(\frac{29}{76}\right)\)
\(\chi_{5415}(1348,\cdot)\) \(1\) \(1\) \(e\left(\frac{51}{76}\right)\) \(e\left(\frac{13}{38}\right)\) \(e\left(\frac{69}{76}\right)\) \(e\left(\frac{1}{76}\right)\) \(e\left(\frac{18}{19}\right)\) \(e\left(\frac{21}{76}\right)\) \(e\left(\frac{11}{19}\right)\) \(e\left(\frac{13}{19}\right)\) \(e\left(\frac{69}{76}\right)\) \(e\left(\frac{47}{76}\right)\)
\(\chi_{5415}(1462,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{76}\right)\) \(e\left(\frac{5}{38}\right)\) \(e\left(\frac{47}{76}\right)\) \(e\left(\frac{15}{76}\right)\) \(e\left(\frac{4}{19}\right)\) \(e\left(\frac{11}{76}\right)\) \(e\left(\frac{13}{19}\right)\) \(e\left(\frac{5}{19}\right)\) \(e\left(\frac{47}{76}\right)\) \(e\left(\frac{21}{76}\right)\)
\(\chi_{5415}(1633,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{76}\right)\) \(e\left(\frac{31}{38}\right)\) \(e\left(\frac{33}{76}\right)\) \(e\left(\frac{17}{76}\right)\) \(e\left(\frac{2}{19}\right)\) \(e\left(\frac{53}{76}\right)\) \(e\left(\frac{16}{19}\right)\) \(e\left(\frac{12}{19}\right)\) \(e\left(\frac{33}{76}\right)\) \(e\left(\frac{39}{76}\right)\)
\(\chi_{5415}(1747,\cdot)\) \(1\) \(1\) \(e\left(\frac{61}{76}\right)\) \(e\left(\frac{23}{38}\right)\) \(e\left(\frac{11}{76}\right)\) \(e\left(\frac{31}{76}\right)\) \(e\left(\frac{7}{19}\right)\) \(e\left(\frac{43}{76}\right)\) \(e\left(\frac{18}{19}\right)\) \(e\left(\frac{4}{19}\right)\) \(e\left(\frac{11}{76}\right)\) \(e\left(\frac{13}{76}\right)\)
\(\chi_{5415}(1918,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{76}\right)\) \(e\left(\frac{11}{38}\right)\) \(e\left(\frac{73}{76}\right)\) \(e\left(\frac{33}{76}\right)\) \(e\left(\frac{5}{19}\right)\) \(e\left(\frac{9}{76}\right)\) \(e\left(\frac{2}{19}\right)\) \(e\left(\frac{11}{19}\right)\) \(e\left(\frac{73}{76}\right)\) \(e\left(\frac{31}{76}\right)\)
\(\chi_{5415}(2032,\cdot)\) \(1\) \(1\) \(e\left(\frac{41}{76}\right)\) \(e\left(\frac{3}{38}\right)\) \(e\left(\frac{51}{76}\right)\) \(e\left(\frac{47}{76}\right)\) \(e\left(\frac{10}{19}\right)\) \(e\left(\frac{75}{76}\right)\) \(e\left(\frac{4}{19}\right)\) \(e\left(\frac{3}{19}\right)\) \(e\left(\frac{51}{76}\right)\) \(e\left(\frac{5}{76}\right)\)
\(\chi_{5415}(2203,\cdot)\) \(1\) \(1\) \(e\left(\frac{67}{76}\right)\) \(e\left(\frac{29}{38}\right)\) \(e\left(\frac{37}{76}\right)\) \(e\left(\frac{49}{76}\right)\) \(e\left(\frac{8}{19}\right)\) \(e\left(\frac{41}{76}\right)\) \(e\left(\frac{7}{19}\right)\) \(e\left(\frac{10}{19}\right)\) \(e\left(\frac{37}{76}\right)\) \(e\left(\frac{23}{76}\right)\)
\(\chi_{5415}(2317,\cdot)\) \(1\) \(1\) \(e\left(\frac{21}{76}\right)\) \(e\left(\frac{21}{38}\right)\) \(e\left(\frac{15}{76}\right)\) \(e\left(\frac{63}{76}\right)\) \(e\left(\frac{13}{19}\right)\) \(e\left(\frac{31}{76}\right)\) \(e\left(\frac{9}{19}\right)\) \(e\left(\frac{2}{19}\right)\) \(e\left(\frac{15}{76}\right)\) \(e\left(\frac{73}{76}\right)\)
\(\chi_{5415}(2488,\cdot)\) \(1\) \(1\) \(e\left(\frac{47}{76}\right)\) \(e\left(\frac{9}{38}\right)\) \(e\left(\frac{1}{76}\right)\) \(e\left(\frac{65}{76}\right)\) \(e\left(\frac{11}{19}\right)\) \(e\left(\frac{73}{76}\right)\) \(e\left(\frac{12}{19}\right)\) \(e\left(\frac{9}{19}\right)\) \(e\left(\frac{1}{76}\right)\) \(e\left(\frac{15}{76}\right)\)
\(\chi_{5415}(2602,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{76}\right)\) \(e\left(\frac{1}{38}\right)\) \(e\left(\frac{55}{76}\right)\) \(e\left(\frac{3}{76}\right)\) \(e\left(\frac{16}{19}\right)\) \(e\left(\frac{63}{76}\right)\) \(e\left(\frac{14}{19}\right)\) \(e\left(\frac{1}{19}\right)\) \(e\left(\frac{55}{76}\right)\) \(e\left(\frac{65}{76}\right)\)
\(\chi_{5415}(2773,\cdot)\) \(1\) \(1\) \(e\left(\frac{27}{76}\right)\) \(e\left(\frac{27}{38}\right)\) \(e\left(\frac{41}{76}\right)\) \(e\left(\frac{5}{76}\right)\) \(e\left(\frac{14}{19}\right)\) \(e\left(\frac{29}{76}\right)\) \(e\left(\frac{17}{19}\right)\) \(e\left(\frac{8}{19}\right)\) \(e\left(\frac{41}{76}\right)\) \(e\left(\frac{7}{76}\right)\)
\(\chi_{5415}(3058,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{76}\right)\) \(e\left(\frac{7}{38}\right)\) \(e\left(\frac{5}{76}\right)\) \(e\left(\frac{21}{76}\right)\) \(e\left(\frac{17}{19}\right)\) \(e\left(\frac{61}{76}\right)\) \(e\left(\frac{3}{19}\right)\) \(e\left(\frac{7}{19}\right)\) \(e\left(\frac{5}{76}\right)\) \(e\left(\frac{75}{76}\right)\)
\(\chi_{5415}(3172,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{76}\right)\) \(e\left(\frac{37}{38}\right)\) \(e\left(\frac{59}{76}\right)\) \(e\left(\frac{35}{76}\right)\) \(e\left(\frac{3}{19}\right)\) \(e\left(\frac{51}{76}\right)\) \(e\left(\frac{5}{19}\right)\) \(e\left(\frac{18}{19}\right)\) \(e\left(\frac{59}{76}\right)\) \(e\left(\frac{49}{76}\right)\)
\(\chi_{5415}(3343,\cdot)\) \(1\) \(1\) \(e\left(\frac{63}{76}\right)\) \(e\left(\frac{25}{38}\right)\) \(e\left(\frac{45}{76}\right)\) \(e\left(\frac{37}{76}\right)\) \(e\left(\frac{1}{19}\right)\) \(e\left(\frac{17}{76}\right)\) \(e\left(\frac{8}{19}\right)\) \(e\left(\frac{6}{19}\right)\) \(e\left(\frac{45}{76}\right)\) \(e\left(\frac{67}{76}\right)\)
\(\chi_{5415}(3457,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{76}\right)\) \(e\left(\frac{17}{38}\right)\) \(e\left(\frac{23}{76}\right)\) \(e\left(\frac{51}{76}\right)\) \(e\left(\frac{6}{19}\right)\) \(e\left(\frac{7}{76}\right)\) \(e\left(\frac{10}{19}\right)\) \(e\left(\frac{17}{19}\right)\) \(e\left(\frac{23}{76}\right)\) \(e\left(\frac{41}{76}\right)\)
\(\chi_{5415}(3628,\cdot)\) \(1\) \(1\) \(e\left(\frac{43}{76}\right)\) \(e\left(\frac{5}{38}\right)\) \(e\left(\frac{9}{76}\right)\) \(e\left(\frac{53}{76}\right)\) \(e\left(\frac{4}{19}\right)\) \(e\left(\frac{49}{76}\right)\) \(e\left(\frac{13}{19}\right)\) \(e\left(\frac{5}{19}\right)\) \(e\left(\frac{9}{76}\right)\) \(e\left(\frac{59}{76}\right)\)
\(\chi_{5415}(3742,\cdot)\) \(1\) \(1\) \(e\left(\frac{73}{76}\right)\) \(e\left(\frac{35}{38}\right)\) \(e\left(\frac{63}{76}\right)\) \(e\left(\frac{67}{76}\right)\) \(e\left(\frac{9}{19}\right)\) \(e\left(\frac{39}{76}\right)\) \(e\left(\frac{15}{19}\right)\) \(e\left(\frac{16}{19}\right)\) \(e\left(\frac{63}{76}\right)\) \(e\left(\frac{33}{76}\right)\)
\(\chi_{5415}(3913,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{76}\right)\) \(e\left(\frac{23}{38}\right)\) \(e\left(\frac{49}{76}\right)\) \(e\left(\frac{69}{76}\right)\) \(e\left(\frac{7}{19}\right)\) \(e\left(\frac{5}{76}\right)\) \(e\left(\frac{18}{19}\right)\) \(e\left(\frac{4}{19}\right)\) \(e\left(\frac{49}{76}\right)\) \(e\left(\frac{51}{76}\right)\)
\(\chi_{5415}(4027,\cdot)\) \(1\) \(1\) \(e\left(\frac{53}{76}\right)\) \(e\left(\frac{15}{38}\right)\) \(e\left(\frac{27}{76}\right)\) \(e\left(\frac{7}{76}\right)\) \(e\left(\frac{12}{19}\right)\) \(e\left(\frac{71}{76}\right)\) \(e\left(\frac{1}{19}\right)\) \(e\left(\frac{15}{19}\right)\) \(e\left(\frac{27}{76}\right)\) \(e\left(\frac{25}{76}\right)\)
\(\chi_{5415}(4198,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{76}\right)\) \(e\left(\frac{3}{38}\right)\) \(e\left(\frac{13}{76}\right)\) \(e\left(\frac{9}{76}\right)\) \(e\left(\frac{10}{19}\right)\) \(e\left(\frac{37}{76}\right)\) \(e\left(\frac{4}{19}\right)\) \(e\left(\frac{3}{19}\right)\) \(e\left(\frac{13}{76}\right)\) \(e\left(\frac{43}{76}\right)\)
\(\chi_{5415}(4312,\cdot)\) \(1\) \(1\) \(e\left(\frac{33}{76}\right)\) \(e\left(\frac{33}{38}\right)\) \(e\left(\frac{67}{76}\right)\) \(e\left(\frac{23}{76}\right)\) \(e\left(\frac{15}{19}\right)\) \(e\left(\frac{27}{76}\right)\) \(e\left(\frac{6}{19}\right)\) \(e\left(\frac{14}{19}\right)\) \(e\left(\frac{67}{76}\right)\) \(e\left(\frac{17}{76}\right)\)
\(\chi_{5415}(4483,\cdot)\) \(1\) \(1\) \(e\left(\frac{59}{76}\right)\) \(e\left(\frac{21}{38}\right)\) \(e\left(\frac{53}{76}\right)\) \(e\left(\frac{25}{76}\right)\) \(e\left(\frac{13}{19}\right)\) \(e\left(\frac{69}{76}\right)\) \(e\left(\frac{9}{19}\right)\) \(e\left(\frac{2}{19}\right)\) \(e\left(\frac{53}{76}\right)\) \(e\left(\frac{35}{76}\right)\)