Basic properties
Modulus: | \(5415\) | |
Conductor: | \(1805\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(76\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{1805}(512,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 5415.bt
\(\chi_{5415}(37,\cdot)\) \(\chi_{5415}(208,\cdot)\) \(\chi_{5415}(322,\cdot)\) \(\chi_{5415}(493,\cdot)\) \(\chi_{5415}(607,\cdot)\) \(\chi_{5415}(778,\cdot)\) \(\chi_{5415}(892,\cdot)\) \(\chi_{5415}(1063,\cdot)\) \(\chi_{5415}(1177,\cdot)\) \(\chi_{5415}(1348,\cdot)\) \(\chi_{5415}(1462,\cdot)\) \(\chi_{5415}(1633,\cdot)\) \(\chi_{5415}(1747,\cdot)\) \(\chi_{5415}(1918,\cdot)\) \(\chi_{5415}(2032,\cdot)\) \(\chi_{5415}(2203,\cdot)\) \(\chi_{5415}(2317,\cdot)\) \(\chi_{5415}(2488,\cdot)\) \(\chi_{5415}(2602,\cdot)\) \(\chi_{5415}(2773,\cdot)\) \(\chi_{5415}(3058,\cdot)\) \(\chi_{5415}(3172,\cdot)\) \(\chi_{5415}(3343,\cdot)\) \(\chi_{5415}(3457,\cdot)\) \(\chi_{5415}(3628,\cdot)\) \(\chi_{5415}(3742,\cdot)\) \(\chi_{5415}(3913,\cdot)\) \(\chi_{5415}(4027,\cdot)\) \(\chi_{5415}(4198,\cdot)\) \(\chi_{5415}(4312,\cdot)\) ...
Related number fields
Field of values: | $\Q(\zeta_{76})$ |
Fixed field: | Number field defined by a degree 76 polynomial |
Values on generators
\((3611,2167,5056)\) → \((1,i,e\left(\frac{1}{38}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(2\) | \(4\) | \(7\) | \(8\) | \(11\) | \(13\) | \(14\) | \(16\) | \(17\) | \(22\) |
\( \chi_{ 5415 }(2317, a) \) | \(1\) | \(1\) | \(e\left(\frac{21}{76}\right)\) | \(e\left(\frac{21}{38}\right)\) | \(e\left(\frac{15}{76}\right)\) | \(e\left(\frac{63}{76}\right)\) | \(e\left(\frac{13}{19}\right)\) | \(e\left(\frac{31}{76}\right)\) | \(e\left(\frac{9}{19}\right)\) | \(e\left(\frac{2}{19}\right)\) | \(e\left(\frac{15}{76}\right)\) | \(e\left(\frac{73}{76}\right)\) |