Properties

Label 567.380
Modulus $567$
Conductor $567$
Order $54$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(567, base_ring=CyclotomicField(54))
 
M = H._module
 
chi = DirichletCharacter(H, M([19,18]))
 
pari: [g,chi] = znchar(Mod(380,567))
 

Basic properties

Modulus: \(567\)
Conductor: \(567\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(54\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 567.bq

\(\chi_{567}(2,\cdot)\) \(\chi_{567}(32,\cdot)\) \(\chi_{567}(65,\cdot)\) \(\chi_{567}(95,\cdot)\) \(\chi_{567}(128,\cdot)\) \(\chi_{567}(158,\cdot)\) \(\chi_{567}(191,\cdot)\) \(\chi_{567}(221,\cdot)\) \(\chi_{567}(254,\cdot)\) \(\chi_{567}(284,\cdot)\) \(\chi_{567}(317,\cdot)\) \(\chi_{567}(347,\cdot)\) \(\chi_{567}(380,\cdot)\) \(\chi_{567}(410,\cdot)\) \(\chi_{567}(443,\cdot)\) \(\chi_{567}(473,\cdot)\) \(\chi_{567}(506,\cdot)\) \(\chi_{567}(536,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{27})\)
Fixed field: Number field defined by a degree 54 polynomial

Values on generators

\((407,325)\) → \((e\left(\frac{19}{54}\right),e\left(\frac{1}{3}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(8\)\(10\)\(11\)\(13\)\(16\)\(17\)\(19\)
\( \chi_{ 567 }(380, a) \) \(-1\)\(1\)\(e\left(\frac{1}{54}\right)\)\(e\left(\frac{1}{27}\right)\)\(e\left(\frac{41}{54}\right)\)\(e\left(\frac{1}{18}\right)\)\(e\left(\frac{7}{9}\right)\)\(e\left(\frac{49}{54}\right)\)\(e\left(\frac{22}{27}\right)\)\(e\left(\frac{2}{27}\right)\)\(e\left(\frac{17}{18}\right)\)\(e\left(\frac{5}{9}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 567 }(380,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 567 }(380,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 567 }(380,·),\chi_{ 567 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 567 }(380,·)) \;\) at \(\; a,b = \) e.g. 1,2