from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(5733, base_ring=CyclotomicField(42))
M = H._module
chi = DirichletCharacter(H, M([21,13,28]))
pari: [g,chi] = znchar(Mod(1088,5733))
Basic properties
Modulus: | \(5733\) | |
Conductor: | \(1911\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(42\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{1911}(1088,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 5733.kq
\(\chi_{5733}(269,\cdot)\) \(\chi_{5733}(341,\cdot)\) \(\chi_{5733}(1088,\cdot)\) \(\chi_{5733}(1160,\cdot)\) \(\chi_{5733}(1907,\cdot)\) \(\chi_{5733}(2798,\cdot)\) \(\chi_{5733}(3545,\cdot)\) \(\chi_{5733}(3617,\cdot)\) \(\chi_{5733}(4364,\cdot)\) \(\chi_{5733}(4436,\cdot)\) \(\chi_{5733}(5183,\cdot)\) \(\chi_{5733}(5255,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{21})\) |
Fixed field: | Number field defined by a degree 42 polynomial |
Values on generators
\((2549,1522,5293)\) → \((-1,e\left(\frac{13}{42}\right),e\left(\frac{2}{3}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(8\) | \(10\) | \(11\) | \(16\) | \(17\) | \(19\) | \(20\) |
\( \chi_{ 5733 }(1088, a) \) | \(1\) | \(1\) | \(e\left(\frac{3}{14}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{10}{21}\right)\) | \(e\left(\frac{9}{14}\right)\) | \(e\left(\frac{29}{42}\right)\) | \(e\left(\frac{23}{42}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{19}{21}\right)\) |
sage: chi.jacobi_sum(n)