Properties

Label 5733.1088
Modulus $5733$
Conductor $1911$
Order $42$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5733, base_ring=CyclotomicField(42))
 
M = H._module
 
chi = DirichletCharacter(H, M([21,13,28]))
 
pari: [g,chi] = znchar(Mod(1088,5733))
 

Basic properties

Modulus: \(5733\)
Conductor: \(1911\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(42\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{1911}(1088,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 5733.kq

\(\chi_{5733}(269,\cdot)\) \(\chi_{5733}(341,\cdot)\) \(\chi_{5733}(1088,\cdot)\) \(\chi_{5733}(1160,\cdot)\) \(\chi_{5733}(1907,\cdot)\) \(\chi_{5733}(2798,\cdot)\) \(\chi_{5733}(3545,\cdot)\) \(\chi_{5733}(3617,\cdot)\) \(\chi_{5733}(4364,\cdot)\) \(\chi_{5733}(4436,\cdot)\) \(\chi_{5733}(5183,\cdot)\) \(\chi_{5733}(5255,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{21})\)
Fixed field: Number field defined by a degree 42 polynomial

Values on generators

\((2549,1522,5293)\) → \((-1,e\left(\frac{13}{42}\right),e\left(\frac{2}{3}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(8\)\(10\)\(11\)\(16\)\(17\)\(19\)\(20\)
\( \chi_{ 5733 }(1088, a) \) \(1\)\(1\)\(e\left(\frac{3}{14}\right)\)\(e\left(\frac{3}{7}\right)\)\(e\left(\frac{10}{21}\right)\)\(e\left(\frac{9}{14}\right)\)\(e\left(\frac{29}{42}\right)\)\(e\left(\frac{23}{42}\right)\)\(e\left(\frac{6}{7}\right)\)\(e\left(\frac{4}{7}\right)\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{19}{21}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 5733 }(1088,a) \;\) at \(\;a = \) e.g. 2