Properties

Label 5733.4436
Modulus 57335733
Conductor 19111911
Order 4242
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5733, base_ring=CyclotomicField(42))
 
M = H._module
 
chi = DirichletCharacter(H, M([21,17,14]))
 
pari: [g,chi] = znchar(Mod(4436,5733))
 

Basic properties

Modulus: 57335733
Conductor: 19111911
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 4242
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ1911(614,)\chi_{1911}(614,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 5733.kq

χ5733(269,)\chi_{5733}(269,\cdot) χ5733(341,)\chi_{5733}(341,\cdot) χ5733(1088,)\chi_{5733}(1088,\cdot) χ5733(1160,)\chi_{5733}(1160,\cdot) χ5733(1907,)\chi_{5733}(1907,\cdot) χ5733(2798,)\chi_{5733}(2798,\cdot) χ5733(3545,)\chi_{5733}(3545,\cdot) χ5733(3617,)\chi_{5733}(3617,\cdot) χ5733(4364,)\chi_{5733}(4364,\cdot) χ5733(4436,)\chi_{5733}(4436,\cdot) χ5733(5183,)\chi_{5733}(5183,\cdot) χ5733(5255,)\chi_{5733}(5255,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ21)\Q(\zeta_{21})
Fixed field: Number field defined by a degree 42 polynomial

Values on generators

(2549,1522,5293)(2549,1522,5293)(1,e(1742),e(13))(-1,e\left(\frac{17}{42}\right),e\left(\frac{1}{3}\right))

First values

aa 1-11122445588101011111616171719192020
χ5733(4436,a) \chi_{ 5733 }(4436, a) 1111e(514)e\left(\frac{5}{14}\right)e(57)e\left(\frac{5}{7}\right)e(521)e\left(\frac{5}{21}\right)e(114)e\left(\frac{1}{14}\right)e(2542)e\left(\frac{25}{42}\right)e(142)e\left(\frac{1}{42}\right)e(37)e\left(\frac{3}{7}\right)e(27)e\left(\frac{2}{7}\right)e(56)e\left(\frac{5}{6}\right)e(2021)e\left(\frac{20}{21}\right)
sage: chi.jacobi_sum(n)
 
χ5733(4436,a)   \chi_{ 5733 }(4436,a) \; at   a=\;a = e.g. 2