from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(5733, base_ring=CyclotomicField(84))
M = H._module
chi = DirichletCharacter(H, M([28,34,49]))
pari: [g,chi] = znchar(Mod(2182,5733))
χ5733(241,⋅)
χ5733(418,⋅)
χ5733(544,⋅)
χ5733(682,⋅)
χ5733(1237,⋅)
χ5733(1363,⋅)
χ5733(1879,⋅)
χ5733(2056,⋅)
χ5733(2182,⋅)
χ5733(2320,⋅)
χ5733(2698,⋅)
χ5733(2875,⋅)
χ5733(3001,⋅)
χ5733(3139,⋅)
χ5733(3517,⋅)
χ5733(3820,⋅)
χ5733(3958,⋅)
χ5733(4336,⋅)
χ5733(4513,⋅)
χ5733(4639,⋅)
χ5733(4777,⋅)
χ5733(5155,⋅)
χ5733(5332,⋅)
χ5733(5596,⋅)
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(2549,1522,5293) → (e(31),e(4217),e(127))
a |
−1 | 1 | 2 | 4 | 5 | 8 | 10 | 11 | 16 | 17 | 19 | 20 |
χ5733(2182,a) |
1 | 1 | e(8437) | e(4237) | e(8455) | e(289) | e(212) | e(2817) | e(2116) | e(72) | e(121) | e(2815) |