Properties

Label 5733.lr
Modulus 57335733
Conductor 57335733
Order 8484
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5733, base_ring=CyclotomicField(84))
 
M = H._module
 
chi = DirichletCharacter(H, M([56,62,77]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(241,5733))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: 57335733
Conductor: 57335733
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 8484
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: Q(ζ84)\Q(\zeta_{84})
Fixed field: Number field defined by a degree 84 polynomial

Characters in Galois orbit

Character 1-1 11 22 44 55 88 1010 1111 1616 1717 1919 2020
χ5733(241,)\chi_{5733}(241,\cdot) 11 11 e(6584)e\left(\frac{65}{84}\right) e(2342)e\left(\frac{23}{42}\right) e(8384)e\left(\frac{83}{84}\right) e(928)e\left(\frac{9}{28}\right) e(1621)e\left(\frac{16}{21}\right) e(1728)e\left(\frac{17}{28}\right) e(221)e\left(\frac{2}{21}\right) e(27)e\left(\frac{2}{7}\right) e(512)e\left(\frac{5}{12}\right) e(1528)e\left(\frac{15}{28}\right)
χ5733(418,)\chi_{5733}(418,\cdot) 11 11 e(7984)e\left(\frac{79}{84}\right) e(3742)e\left(\frac{37}{42}\right) e(1384)e\left(\frac{13}{84}\right) e(2328)e\left(\frac{23}{28}\right) e(221)e\left(\frac{2}{21}\right) e(328)e\left(\frac{3}{28}\right) e(1621)e\left(\frac{16}{21}\right) e(27)e\left(\frac{2}{7}\right) e(712)e\left(\frac{7}{12}\right) e(128)e\left(\frac{1}{28}\right)
χ5733(544,)\chi_{5733}(544,\cdot) 11 11 e(7384)e\left(\frac{73}{84}\right) e(3142)e\left(\frac{31}{42}\right) e(7984)e\left(\frac{79}{84}\right) e(1728)e\left(\frac{17}{28}\right) e(1721)e\left(\frac{17}{21}\right) e(128)e\left(\frac{1}{28}\right) e(1021)e\left(\frac{10}{21}\right) e(37)e\left(\frac{3}{7}\right) e(112)e\left(\frac{1}{12}\right) e(1928)e\left(\frac{19}{28}\right)
χ5733(682,)\chi_{5733}(682,\cdot) 11 11 e(2384)e\left(\frac{23}{84}\right) e(2342)e\left(\frac{23}{42}\right) e(4184)e\left(\frac{41}{84}\right) e(2328)e\left(\frac{23}{28}\right) e(1621)e\left(\frac{16}{21}\right) e(328)e\left(\frac{3}{28}\right) e(221)e\left(\frac{2}{21}\right) e(27)e\left(\frac{2}{7}\right) e(1112)e\left(\frac{11}{12}\right) e(128)e\left(\frac{1}{28}\right)
χ5733(1237,)\chi_{5733}(1237,\cdot) 11 11 e(1984)e\left(\frac{19}{84}\right) e(1942)e\left(\frac{19}{42}\right) e(184)e\left(\frac{1}{84}\right) e(1928)e\left(\frac{19}{28}\right) e(521)e\left(\frac{5}{21}\right) e(1128)e\left(\frac{11}{28}\right) e(1921)e\left(\frac{19}{21}\right) e(57)e\left(\frac{5}{7}\right) e(712)e\left(\frac{7}{12}\right) e(1328)e\left(\frac{13}{28}\right)
χ5733(1363,)\chi_{5733}(1363,\cdot) 11 11 e(1384)e\left(\frac{13}{84}\right) e(1342)e\left(\frac{13}{42}\right) e(6784)e\left(\frac{67}{84}\right) e(1328)e\left(\frac{13}{28}\right) e(2021)e\left(\frac{20}{21}\right) e(928)e\left(\frac{9}{28}\right) e(1321)e\left(\frac{13}{21}\right) e(67)e\left(\frac{6}{7}\right) e(112)e\left(\frac{1}{12}\right) e(328)e\left(\frac{3}{28}\right)
χ5733(1879,)\chi_{5733}(1879,\cdot) 11 11 e(584)e\left(\frac{5}{84}\right) e(542)e\left(\frac{5}{42}\right) e(7184)e\left(\frac{71}{84}\right) e(528)e\left(\frac{5}{28}\right) e(1921)e\left(\frac{19}{21}\right) e(2528)e\left(\frac{25}{28}\right) e(521)e\left(\frac{5}{21}\right) e(57)e\left(\frac{5}{7}\right) e(512)e\left(\frac{5}{12}\right) e(2728)e\left(\frac{27}{28}\right)
χ5733(2056,)\chi_{5733}(2056,\cdot) 11 11 e(4384)e\left(\frac{43}{84}\right) e(142)e\left(\frac{1}{42}\right) e(7384)e\left(\frac{73}{84}\right) e(1528)e\left(\frac{15}{28}\right) e(821)e\left(\frac{8}{21}\right) e(1928)e\left(\frac{19}{28}\right) e(121)e\left(\frac{1}{21}\right) e(17)e\left(\frac{1}{7}\right) e(712)e\left(\frac{7}{12}\right) e(2528)e\left(\frac{25}{28}\right)
χ5733(2182,)\chi_{5733}(2182,\cdot) 11 11 e(3784)e\left(\frac{37}{84}\right) e(3742)e\left(\frac{37}{42}\right) e(5584)e\left(\frac{55}{84}\right) e(928)e\left(\frac{9}{28}\right) e(221)e\left(\frac{2}{21}\right) e(1728)e\left(\frac{17}{28}\right) e(1621)e\left(\frac{16}{21}\right) e(27)e\left(\frac{2}{7}\right) e(112)e\left(\frac{1}{12}\right) e(1528)e\left(\frac{15}{28}\right)
χ5733(2320,)\chi_{5733}(2320,\cdot) 11 11 e(4784)e\left(\frac{47}{84}\right) e(542)e\left(\frac{5}{42}\right) e(2984)e\left(\frac{29}{84}\right) e(1928)e\left(\frac{19}{28}\right) e(1921)e\left(\frac{19}{21}\right) e(1128)e\left(\frac{11}{28}\right) e(521)e\left(\frac{5}{21}\right) e(57)e\left(\frac{5}{7}\right) e(1112)e\left(\frac{11}{12}\right) e(1328)e\left(\frac{13}{28}\right)
χ5733(2698,)\chi_{5733}(2698,\cdot) 11 11 e(1784)e\left(\frac{17}{84}\right) e(1742)e\left(\frac{17}{42}\right) e(2384)e\left(\frac{23}{84}\right) e(1728)e\left(\frac{17}{28}\right) e(1021)e\left(\frac{10}{21}\right) e(128)e\left(\frac{1}{28}\right) e(1721)e\left(\frac{17}{21}\right) e(37)e\left(\frac{3}{7}\right) e(512)e\left(\frac{5}{12}\right) e(1928)e\left(\frac{19}{28}\right)
χ5733(2875,)\chi_{5733}(2875,\cdot) 11 11 e(6784)e\left(\frac{67}{84}\right) e(2542)e\left(\frac{25}{42}\right) e(6184)e\left(\frac{61}{84}\right) e(1128)e\left(\frac{11}{28}\right) e(1121)e\left(\frac{11}{21}\right) e(2728)e\left(\frac{27}{28}\right) e(421)e\left(\frac{4}{21}\right) e(47)e\left(\frac{4}{7}\right) e(712)e\left(\frac{7}{12}\right) e(928)e\left(\frac{9}{28}\right)
χ5733(3001,)\chi_{5733}(3001,\cdot) 11 11 e(6184)e\left(\frac{61}{84}\right) e(1942)e\left(\frac{19}{42}\right) e(4384)e\left(\frac{43}{84}\right) e(528)e\left(\frac{5}{28}\right) e(521)e\left(\frac{5}{21}\right) e(2528)e\left(\frac{25}{28}\right) e(1921)e\left(\frac{19}{21}\right) e(57)e\left(\frac{5}{7}\right) e(112)e\left(\frac{1}{12}\right) e(2728)e\left(\frac{27}{28}\right)
χ5733(3139,)\chi_{5733}(3139,\cdot) 11 11 e(5984)e\left(\frac{59}{84}\right) e(1742)e\left(\frac{17}{42}\right) e(6584)e\left(\frac{65}{84}\right) e(328)e\left(\frac{3}{28}\right) e(1021)e\left(\frac{10}{21}\right) e(1528)e\left(\frac{15}{28}\right) e(1721)e\left(\frac{17}{21}\right) e(37)e\left(\frac{3}{7}\right) e(1112)e\left(\frac{11}{12}\right) e(528)e\left(\frac{5}{28}\right)
χ5733(3517,)\chi_{5733}(3517,\cdot) 11 11 e(2984)e\left(\frac{29}{84}\right) e(2942)e\left(\frac{29}{42}\right) e(5984)e\left(\frac{59}{84}\right) e(128)e\left(\frac{1}{28}\right) e(121)e\left(\frac{1}{21}\right) e(528)e\left(\frac{5}{28}\right) e(821)e\left(\frac{8}{21}\right) e(17)e\left(\frac{1}{7}\right) e(512)e\left(\frac{5}{12}\right) e(1128)e\left(\frac{11}{28}\right)
χ5733(3820,)\chi_{5733}(3820,\cdot) 11 11 e(184)e\left(\frac{1}{84}\right) e(142)e\left(\frac{1}{42}\right) e(3184)e\left(\frac{31}{84}\right) e(128)e\left(\frac{1}{28}\right) e(821)e\left(\frac{8}{21}\right) e(528)e\left(\frac{5}{28}\right) e(121)e\left(\frac{1}{21}\right) e(17)e\left(\frac{1}{7}\right) e(112)e\left(\frac{1}{12}\right) e(1128)e\left(\frac{11}{28}\right)
χ5733(3958,)\chi_{5733}(3958,\cdot) 11 11 e(7184)e\left(\frac{71}{84}\right) e(2942)e\left(\frac{29}{42}\right) e(1784)e\left(\frac{17}{84}\right) e(1528)e\left(\frac{15}{28}\right) e(121)e\left(\frac{1}{21}\right) e(1928)e\left(\frac{19}{28}\right) e(821)e\left(\frac{8}{21}\right) e(17)e\left(\frac{1}{7}\right) e(1112)e\left(\frac{11}{12}\right) e(2528)e\left(\frac{25}{28}\right)
χ5733(4336,)\chi_{5733}(4336,\cdot) 11 11 e(4184)e\left(\frac{41}{84}\right) e(4142)e\left(\frac{41}{42}\right) e(1184)e\left(\frac{11}{84}\right) e(1328)e\left(\frac{13}{28}\right) e(1321)e\left(\frac{13}{21}\right) e(928)e\left(\frac{9}{28}\right) e(2021)e\left(\frac{20}{21}\right) e(67)e\left(\frac{6}{7}\right) e(512)e\left(\frac{5}{12}\right) e(328)e\left(\frac{3}{28}\right)
χ5733(4513,)\chi_{5733}(4513,\cdot) 11 11 e(3184)e\left(\frac{31}{84}\right) e(3142)e\left(\frac{31}{42}\right) e(3784)e\left(\frac{37}{84}\right) e(328)e\left(\frac{3}{28}\right) e(1721)e\left(\frac{17}{21}\right) e(1528)e\left(\frac{15}{28}\right) e(1021)e\left(\frac{10}{21}\right) e(37)e\left(\frac{3}{7}\right) e(712)e\left(\frac{7}{12}\right) e(528)e\left(\frac{5}{28}\right)
χ5733(4639,)\chi_{5733}(4639,\cdot) 11 11 e(2584)e\left(\frac{25}{84}\right) e(2542)e\left(\frac{25}{42}\right) e(1984)e\left(\frac{19}{84}\right) e(2528)e\left(\frac{25}{28}\right) e(1121)e\left(\frac{11}{21}\right) e(1328)e\left(\frac{13}{28}\right) e(421)e\left(\frac{4}{21}\right) e(47)e\left(\frac{4}{7}\right) e(112)e\left(\frac{1}{12}\right) e(2328)e\left(\frac{23}{28}\right)
χ5733(4777,)\chi_{5733}(4777,\cdot) 11 11 e(8384)e\left(\frac{83}{84}\right) e(4142)e\left(\frac{41}{42}\right) e(5384)e\left(\frac{53}{84}\right) e(2728)e\left(\frac{27}{28}\right) e(1321)e\left(\frac{13}{21}\right) e(2328)e\left(\frac{23}{28}\right) e(2021)e\left(\frac{20}{21}\right) e(67)e\left(\frac{6}{7}\right) e(1112)e\left(\frac{11}{12}\right) e(1728)e\left(\frac{17}{28}\right)
χ5733(5155,)\chi_{5733}(5155,\cdot) 11 11 e(5384)e\left(\frac{53}{84}\right) e(1142)e\left(\frac{11}{42}\right) e(4784)e\left(\frac{47}{84}\right) e(2528)e\left(\frac{25}{28}\right) e(421)e\left(\frac{4}{21}\right) e(1328)e\left(\frac{13}{28}\right) e(1121)e\left(\frac{11}{21}\right) e(47)e\left(\frac{4}{7}\right) e(512)e\left(\frac{5}{12}\right) e(2328)e\left(\frac{23}{28}\right)
χ5733(5332,)\chi_{5733}(5332,\cdot) 11 11 e(5584)e\left(\frac{55}{84}\right) e(1342)e\left(\frac{13}{42}\right) e(2584)e\left(\frac{25}{84}\right) e(2728)e\left(\frac{27}{28}\right) e(2021)e\left(\frac{20}{21}\right) e(2328)e\left(\frac{23}{28}\right) e(1321)e\left(\frac{13}{21}\right) e(67)e\left(\frac{6}{7}\right) e(712)e\left(\frac{7}{12}\right) e(1728)e\left(\frac{17}{28}\right)
χ5733(5596,)\chi_{5733}(5596,\cdot) 11 11 e(1184)e\left(\frac{11}{84}\right) e(1142)e\left(\frac{11}{42}\right) e(584)e\left(\frac{5}{84}\right) e(1128)e\left(\frac{11}{28}\right) e(421)e\left(\frac{4}{21}\right) e(2728)e\left(\frac{27}{28}\right) e(1121)e\left(\frac{11}{21}\right) e(47)e\left(\frac{4}{7}\right) e(1112)e\left(\frac{11}{12}\right) e(928)e\left(\frac{9}{28}\right)