from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(5733, base_ring=CyclotomicField(84))
M = H._module
chi = DirichletCharacter(H, M([56,62,77]))
chi.galois_orbit()
[g,chi] = znchar(Mod(241,5733))
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Basic properties
Modulus: | \(5733\) | |
Conductor: | \(5733\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(84\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Related number fields
Field of values: | $\Q(\zeta_{84})$ |
Fixed field: | Number field defined by a degree 84 polynomial |
Characters in Galois orbit
Character | \(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(8\) | \(10\) | \(11\) | \(16\) | \(17\) | \(19\) | \(20\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{5733}(241,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{65}{84}\right)\) | \(e\left(\frac{23}{42}\right)\) | \(e\left(\frac{83}{84}\right)\) | \(e\left(\frac{9}{28}\right)\) | \(e\left(\frac{16}{21}\right)\) | \(e\left(\frac{17}{28}\right)\) | \(e\left(\frac{2}{21}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{15}{28}\right)\) |
\(\chi_{5733}(418,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{79}{84}\right)\) | \(e\left(\frac{37}{42}\right)\) | \(e\left(\frac{13}{84}\right)\) | \(e\left(\frac{23}{28}\right)\) | \(e\left(\frac{2}{21}\right)\) | \(e\left(\frac{3}{28}\right)\) | \(e\left(\frac{16}{21}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{1}{28}\right)\) |
\(\chi_{5733}(544,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{73}{84}\right)\) | \(e\left(\frac{31}{42}\right)\) | \(e\left(\frac{79}{84}\right)\) | \(e\left(\frac{17}{28}\right)\) | \(e\left(\frac{17}{21}\right)\) | \(e\left(\frac{1}{28}\right)\) | \(e\left(\frac{10}{21}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{19}{28}\right)\) |
\(\chi_{5733}(682,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{23}{84}\right)\) | \(e\left(\frac{23}{42}\right)\) | \(e\left(\frac{41}{84}\right)\) | \(e\left(\frac{23}{28}\right)\) | \(e\left(\frac{16}{21}\right)\) | \(e\left(\frac{3}{28}\right)\) | \(e\left(\frac{2}{21}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{1}{28}\right)\) |
\(\chi_{5733}(1237,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{19}{84}\right)\) | \(e\left(\frac{19}{42}\right)\) | \(e\left(\frac{1}{84}\right)\) | \(e\left(\frac{19}{28}\right)\) | \(e\left(\frac{5}{21}\right)\) | \(e\left(\frac{11}{28}\right)\) | \(e\left(\frac{19}{21}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{13}{28}\right)\) |
\(\chi_{5733}(1363,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{13}{84}\right)\) | \(e\left(\frac{13}{42}\right)\) | \(e\left(\frac{67}{84}\right)\) | \(e\left(\frac{13}{28}\right)\) | \(e\left(\frac{20}{21}\right)\) | \(e\left(\frac{9}{28}\right)\) | \(e\left(\frac{13}{21}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{3}{28}\right)\) |
\(\chi_{5733}(1879,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{5}{84}\right)\) | \(e\left(\frac{5}{42}\right)\) | \(e\left(\frac{71}{84}\right)\) | \(e\left(\frac{5}{28}\right)\) | \(e\left(\frac{19}{21}\right)\) | \(e\left(\frac{25}{28}\right)\) | \(e\left(\frac{5}{21}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{27}{28}\right)\) |
\(\chi_{5733}(2056,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{43}{84}\right)\) | \(e\left(\frac{1}{42}\right)\) | \(e\left(\frac{73}{84}\right)\) | \(e\left(\frac{15}{28}\right)\) | \(e\left(\frac{8}{21}\right)\) | \(e\left(\frac{19}{28}\right)\) | \(e\left(\frac{1}{21}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{25}{28}\right)\) |
\(\chi_{5733}(2182,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{37}{84}\right)\) | \(e\left(\frac{37}{42}\right)\) | \(e\left(\frac{55}{84}\right)\) | \(e\left(\frac{9}{28}\right)\) | \(e\left(\frac{2}{21}\right)\) | \(e\left(\frac{17}{28}\right)\) | \(e\left(\frac{16}{21}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{15}{28}\right)\) |
\(\chi_{5733}(2320,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{47}{84}\right)\) | \(e\left(\frac{5}{42}\right)\) | \(e\left(\frac{29}{84}\right)\) | \(e\left(\frac{19}{28}\right)\) | \(e\left(\frac{19}{21}\right)\) | \(e\left(\frac{11}{28}\right)\) | \(e\left(\frac{5}{21}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{13}{28}\right)\) |
\(\chi_{5733}(2698,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{17}{84}\right)\) | \(e\left(\frac{17}{42}\right)\) | \(e\left(\frac{23}{84}\right)\) | \(e\left(\frac{17}{28}\right)\) | \(e\left(\frac{10}{21}\right)\) | \(e\left(\frac{1}{28}\right)\) | \(e\left(\frac{17}{21}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{19}{28}\right)\) |
\(\chi_{5733}(2875,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{67}{84}\right)\) | \(e\left(\frac{25}{42}\right)\) | \(e\left(\frac{61}{84}\right)\) | \(e\left(\frac{11}{28}\right)\) | \(e\left(\frac{11}{21}\right)\) | \(e\left(\frac{27}{28}\right)\) | \(e\left(\frac{4}{21}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{9}{28}\right)\) |
\(\chi_{5733}(3001,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{61}{84}\right)\) | \(e\left(\frac{19}{42}\right)\) | \(e\left(\frac{43}{84}\right)\) | \(e\left(\frac{5}{28}\right)\) | \(e\left(\frac{5}{21}\right)\) | \(e\left(\frac{25}{28}\right)\) | \(e\left(\frac{19}{21}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{27}{28}\right)\) |
\(\chi_{5733}(3139,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{59}{84}\right)\) | \(e\left(\frac{17}{42}\right)\) | \(e\left(\frac{65}{84}\right)\) | \(e\left(\frac{3}{28}\right)\) | \(e\left(\frac{10}{21}\right)\) | \(e\left(\frac{15}{28}\right)\) | \(e\left(\frac{17}{21}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{5}{28}\right)\) |
\(\chi_{5733}(3517,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{29}{84}\right)\) | \(e\left(\frac{29}{42}\right)\) | \(e\left(\frac{59}{84}\right)\) | \(e\left(\frac{1}{28}\right)\) | \(e\left(\frac{1}{21}\right)\) | \(e\left(\frac{5}{28}\right)\) | \(e\left(\frac{8}{21}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{11}{28}\right)\) |
\(\chi_{5733}(3820,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{1}{84}\right)\) | \(e\left(\frac{1}{42}\right)\) | \(e\left(\frac{31}{84}\right)\) | \(e\left(\frac{1}{28}\right)\) | \(e\left(\frac{8}{21}\right)\) | \(e\left(\frac{5}{28}\right)\) | \(e\left(\frac{1}{21}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{11}{28}\right)\) |
\(\chi_{5733}(3958,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{71}{84}\right)\) | \(e\left(\frac{29}{42}\right)\) | \(e\left(\frac{17}{84}\right)\) | \(e\left(\frac{15}{28}\right)\) | \(e\left(\frac{1}{21}\right)\) | \(e\left(\frac{19}{28}\right)\) | \(e\left(\frac{8}{21}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{25}{28}\right)\) |
\(\chi_{5733}(4336,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{41}{84}\right)\) | \(e\left(\frac{41}{42}\right)\) | \(e\left(\frac{11}{84}\right)\) | \(e\left(\frac{13}{28}\right)\) | \(e\left(\frac{13}{21}\right)\) | \(e\left(\frac{9}{28}\right)\) | \(e\left(\frac{20}{21}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{3}{28}\right)\) |
\(\chi_{5733}(4513,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{31}{84}\right)\) | \(e\left(\frac{31}{42}\right)\) | \(e\left(\frac{37}{84}\right)\) | \(e\left(\frac{3}{28}\right)\) | \(e\left(\frac{17}{21}\right)\) | \(e\left(\frac{15}{28}\right)\) | \(e\left(\frac{10}{21}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{5}{28}\right)\) |
\(\chi_{5733}(4639,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{25}{84}\right)\) | \(e\left(\frac{25}{42}\right)\) | \(e\left(\frac{19}{84}\right)\) | \(e\left(\frac{25}{28}\right)\) | \(e\left(\frac{11}{21}\right)\) | \(e\left(\frac{13}{28}\right)\) | \(e\left(\frac{4}{21}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{23}{28}\right)\) |
\(\chi_{5733}(4777,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{83}{84}\right)\) | \(e\left(\frac{41}{42}\right)\) | \(e\left(\frac{53}{84}\right)\) | \(e\left(\frac{27}{28}\right)\) | \(e\left(\frac{13}{21}\right)\) | \(e\left(\frac{23}{28}\right)\) | \(e\left(\frac{20}{21}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{17}{28}\right)\) |
\(\chi_{5733}(5155,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{53}{84}\right)\) | \(e\left(\frac{11}{42}\right)\) | \(e\left(\frac{47}{84}\right)\) | \(e\left(\frac{25}{28}\right)\) | \(e\left(\frac{4}{21}\right)\) | \(e\left(\frac{13}{28}\right)\) | \(e\left(\frac{11}{21}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{23}{28}\right)\) |
\(\chi_{5733}(5332,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{55}{84}\right)\) | \(e\left(\frac{13}{42}\right)\) | \(e\left(\frac{25}{84}\right)\) | \(e\left(\frac{27}{28}\right)\) | \(e\left(\frac{20}{21}\right)\) | \(e\left(\frac{23}{28}\right)\) | \(e\left(\frac{13}{21}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{17}{28}\right)\) |
\(\chi_{5733}(5596,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{11}{84}\right)\) | \(e\left(\frac{11}{42}\right)\) | \(e\left(\frac{5}{84}\right)\) | \(e\left(\frac{11}{28}\right)\) | \(e\left(\frac{4}{21}\right)\) | \(e\left(\frac{27}{28}\right)\) | \(e\left(\frac{11}{21}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{9}{28}\right)\) |