Properties

Label 5733.mq
Modulus 57335733
Conductor 637637
Order 8484
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5733, base_ring=CyclotomicField(84))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,38,35]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(136,5733))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: 57335733
Conductor: 637637
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 8484
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 637.cd
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: Q(ζ84)\Q(\zeta_{84})
Fixed field: Number field defined by a degree 84 polynomial

Characters in Galois orbit

Character 1-1 11 22 44 55 88 1010 1111 1616 1717 1919 2020
χ5733(136,)\chi_{5733}(136,\cdot) 11 11 e(528)e\left(\frac{5}{28}\right) e(514)e\left(\frac{5}{14}\right) e(7384)e\left(\frac{73}{84}\right) e(1528)e\left(\frac{15}{28}\right) e(121)e\left(\frac{1}{21}\right) e(184)e\left(\frac{1}{84}\right) e(57)e\left(\frac{5}{7}\right) e(17)e\left(\frac{1}{7}\right) e(1112)e\left(\frac{11}{12}\right) e(1984)e\left(\frac{19}{84}\right)
χ5733(145,)\chi_{5733}(145,\cdot) 11 11 e(528)e\left(\frac{5}{28}\right) e(514)e\left(\frac{5}{14}\right) e(1784)e\left(\frac{17}{84}\right) e(1528)e\left(\frac{15}{28}\right) e(821)e\left(\frac{8}{21}\right) e(2984)e\left(\frac{29}{84}\right) e(57)e\left(\frac{5}{7}\right) e(17)e\left(\frac{1}{7}\right) e(712)e\left(\frac{7}{12}\right) e(4784)e\left(\frac{47}{84}\right)
χ5733(271,)\chi_{5733}(271,\cdot) 11 11 e(328)e\left(\frac{3}{28}\right) e(314)e\left(\frac{3}{14}\right) e(8384)e\left(\frac{83}{84}\right) e(928)e\left(\frac{9}{28}\right) e(221)e\left(\frac{2}{21}\right) e(2384)e\left(\frac{23}{84}\right) e(37)e\left(\frac{3}{7}\right) e(27)e\left(\frac{2}{7}\right) e(112)e\left(\frac{1}{12}\right) e(1784)e\left(\frac{17}{84}\right)
χ5733(514,)\chi_{5733}(514,\cdot) 11 11 e(2328)e\left(\frac{23}{28}\right) e(914)e\left(\frac{9}{14}\right) e(6784)e\left(\frac{67}{84}\right) e(1328)e\left(\frac{13}{28}\right) e(1321)e\left(\frac{13}{21}\right) e(5584)e\left(\frac{55}{84}\right) e(27)e\left(\frac{2}{7}\right) e(67)e\left(\frac{6}{7}\right) e(512)e\left(\frac{5}{12}\right) e(3784)e\left(\frac{37}{84}\right)
χ5733(955,)\chi_{5733}(955,\cdot) 11 11 e(928)e\left(\frac{9}{28}\right) e(914)e\left(\frac{9}{14}\right) e(2584)e\left(\frac{25}{84}\right) e(2728)e\left(\frac{27}{28}\right) e(1321)e\left(\frac{13}{21}\right) e(1384)e\left(\frac{13}{84}\right) e(27)e\left(\frac{2}{7}\right) e(67)e\left(\frac{6}{7}\right) e(1112)e\left(\frac{11}{12}\right) e(7984)e\left(\frac{79}{84}\right)
χ5733(964,)\chi_{5733}(964,\cdot) 11 11 e(1328)e\left(\frac{13}{28}\right) e(1314)e\left(\frac{13}{14}\right) e(584)e\left(\frac{5}{84}\right) e(1128)e\left(\frac{11}{28}\right) e(1121)e\left(\frac{11}{21}\right) e(5384)e\left(\frac{53}{84}\right) e(67)e\left(\frac{6}{7}\right) e(47)e\left(\frac{4}{7}\right) e(712)e\left(\frac{7}{12}\right) e(8384)e\left(\frac{83}{84}\right)
χ5733(1090,)\chi_{5733}(1090,\cdot) 11 11 e(1128)e\left(\frac{11}{28}\right) e(1114)e\left(\frac{11}{14}\right) e(7184)e\left(\frac{71}{84}\right) e(528)e\left(\frac{5}{28}\right) e(521)e\left(\frac{5}{21}\right) e(4784)e\left(\frac{47}{84}\right) e(47)e\left(\frac{4}{7}\right) e(57)e\left(\frac{5}{7}\right) e(112)e\left(\frac{1}{12}\right) e(5384)e\left(\frac{53}{84}\right)
χ5733(1333,)\chi_{5733}(1333,\cdot) 11 11 e(2728)e\left(\frac{27}{28}\right) e(1314)e\left(\frac{13}{14}\right) e(1984)e\left(\frac{19}{84}\right) e(2528)e\left(\frac{25}{28}\right) e(421)e\left(\frac{4}{21}\right) e(6784)e\left(\frac{67}{84}\right) e(67)e\left(\frac{6}{7}\right) e(47)e\left(\frac{4}{7}\right) e(512)e\left(\frac{5}{12}\right) e(1384)e\left(\frac{13}{84}\right)
χ5733(1774,)\chi_{5733}(1774,\cdot) 11 11 e(1328)e\left(\frac{13}{28}\right) e(1314)e\left(\frac{13}{14}\right) e(6184)e\left(\frac{61}{84}\right) e(1128)e\left(\frac{11}{28}\right) e(421)e\left(\frac{4}{21}\right) e(2584)e\left(\frac{25}{84}\right) e(67)e\left(\frac{6}{7}\right) e(47)e\left(\frac{4}{7}\right) e(1112)e\left(\frac{11}{12}\right) e(5584)e\left(\frac{55}{84}\right)
χ5733(1909,)\chi_{5733}(1909,\cdot) 11 11 e(1928)e\left(\frac{19}{28}\right) e(514)e\left(\frac{5}{14}\right) e(5984)e\left(\frac{59}{84}\right) e(128)e\left(\frac{1}{28}\right) e(821)e\left(\frac{8}{21}\right) e(7184)e\left(\frac{71}{84}\right) e(57)e\left(\frac{5}{7}\right) e(17)e\left(\frac{1}{7}\right) e(112)e\left(\frac{1}{12}\right) e(584)e\left(\frac{5}{84}\right)
χ5733(2152,)\chi_{5733}(2152,\cdot) 11 11 e(328)e\left(\frac{3}{28}\right) e(314)e\left(\frac{3}{14}\right) e(5584)e\left(\frac{55}{84}\right) e(928)e\left(\frac{9}{28}\right) e(1621)e\left(\frac{16}{21}\right) e(7984)e\left(\frac{79}{84}\right) e(37)e\left(\frac{3}{7}\right) e(27)e\left(\frac{2}{7}\right) e(512)e\left(\frac{5}{12}\right) e(7384)e\left(\frac{73}{84}\right)
χ5733(2593,)\chi_{5733}(2593,\cdot) 11 11 e(1728)e\left(\frac{17}{28}\right) e(314)e\left(\frac{3}{14}\right) e(1384)e\left(\frac{13}{84}\right) e(2328)e\left(\frac{23}{28}\right) e(1621)e\left(\frac{16}{21}\right) e(3784)e\left(\frac{37}{84}\right) e(37)e\left(\frac{3}{7}\right) e(27)e\left(\frac{2}{7}\right) e(1112)e\left(\frac{11}{12}\right) e(3184)e\left(\frac{31}{84}\right)
χ5733(2602,)\chi_{5733}(2602,\cdot) 11 11 e(128)e\left(\frac{1}{28}\right) e(114)e\left(\frac{1}{14}\right) e(6584)e\left(\frac{65}{84}\right) e(328)e\left(\frac{3}{28}\right) e(1721)e\left(\frac{17}{21}\right) e(1784)e\left(\frac{17}{84}\right) e(17)e\left(\frac{1}{7}\right) e(37)e\left(\frac{3}{7}\right) e(712)e\left(\frac{7}{12}\right) e(7184)e\left(\frac{71}{84}\right)
χ5733(2728,)\chi_{5733}(2728,\cdot) 11 11 e(2728)e\left(\frac{27}{28}\right) e(1314)e\left(\frac{13}{14}\right) e(4784)e\left(\frac{47}{84}\right) e(2528)e\left(\frac{25}{28}\right) e(1121)e\left(\frac{11}{21}\right) e(1184)e\left(\frac{11}{84}\right) e(67)e\left(\frac{6}{7}\right) e(47)e\left(\frac{4}{7}\right) e(112)e\left(\frac{1}{12}\right) e(4184)e\left(\frac{41}{84}\right)
χ5733(3421,)\chi_{5733}(3421,\cdot) 11 11 e(928)e\left(\frac{9}{28}\right) e(914)e\left(\frac{9}{14}\right) e(5384)e\left(\frac{53}{84}\right) e(2728)e\left(\frac{27}{28}\right) e(2021)e\left(\frac{20}{21}\right) e(4184)e\left(\frac{41}{84}\right) e(27)e\left(\frac{2}{7}\right) e(67)e\left(\frac{6}{7}\right) e(712)e\left(\frac{7}{12}\right) e(2384)e\left(\frac{23}{84}\right)
χ5733(3790,)\chi_{5733}(3790,\cdot) 11 11 e(1128)e\left(\frac{11}{28}\right) e(1114)e\left(\frac{11}{14}\right) e(4384)e\left(\frac{43}{84}\right) e(528)e\left(\frac{5}{28}\right) e(1921)e\left(\frac{19}{21}\right) e(1984)e\left(\frac{19}{84}\right) e(47)e\left(\frac{4}{7}\right) e(57)e\left(\frac{5}{7}\right) e(512)e\left(\frac{5}{12}\right) e(2584)e\left(\frac{25}{84}\right)
χ5733(4231,)\chi_{5733}(4231,\cdot) 11 11 e(2528)e\left(\frac{25}{28}\right) e(1114)e\left(\frac{11}{14}\right) e(184)e\left(\frac{1}{84}\right) e(1928)e\left(\frac{19}{28}\right) e(1921)e\left(\frac{19}{21}\right) e(6184)e\left(\frac{61}{84}\right) e(47)e\left(\frac{4}{7}\right) e(57)e\left(\frac{5}{7}\right) e(1112)e\left(\frac{11}{12}\right) e(6784)e\left(\frac{67}{84}\right)
χ5733(4240,)\chi_{5733}(4240,\cdot) 11 11 e(1728)e\left(\frac{17}{28}\right) e(314)e\left(\frac{3}{14}\right) e(4184)e\left(\frac{41}{84}\right) e(2328)e\left(\frac{23}{28}\right) e(221)e\left(\frac{2}{21}\right) e(6584)e\left(\frac{65}{84}\right) e(37)e\left(\frac{3}{7}\right) e(27)e\left(\frac{2}{7}\right) e(712)e\left(\frac{7}{12}\right) e(5984)e\left(\frac{59}{84}\right)
χ5733(4366,)\chi_{5733}(4366,\cdot) 11 11 e(1528)e\left(\frac{15}{28}\right) e(114)e\left(\frac{1}{14}\right) e(2384)e\left(\frac{23}{84}\right) e(1728)e\left(\frac{17}{28}\right) e(1721)e\left(\frac{17}{21}\right) e(5984)e\left(\frac{59}{84}\right) e(17)e\left(\frac{1}{7}\right) e(37)e\left(\frac{3}{7}\right) e(112)e\left(\frac{1}{12}\right) e(2984)e\left(\frac{29}{84}\right)
χ5733(4609,)\chi_{5733}(4609,\cdot) 11 11 e(1528)e\left(\frac{15}{28}\right) e(114)e\left(\frac{1}{14}\right) e(7984)e\left(\frac{79}{84}\right) e(1728)e\left(\frac{17}{28}\right) e(1021)e\left(\frac{10}{21}\right) e(3184)e\left(\frac{31}{84}\right) e(17)e\left(\frac{1}{7}\right) e(37)e\left(\frac{3}{7}\right) e(512)e\left(\frac{5}{12}\right) e(184)e\left(\frac{1}{84}\right)
χ5733(5050,)\chi_{5733}(5050,\cdot) 11 11 e(128)e\left(\frac{1}{28}\right) e(114)e\left(\frac{1}{14}\right) e(3784)e\left(\frac{37}{84}\right) e(328)e\left(\frac{3}{28}\right) e(1021)e\left(\frac{10}{21}\right) e(7384)e\left(\frac{73}{84}\right) e(17)e\left(\frac{1}{7}\right) e(37)e\left(\frac{3}{7}\right) e(1112)e\left(\frac{11}{12}\right) e(4384)e\left(\frac{43}{84}\right)
χ5733(5059,)\chi_{5733}(5059,\cdot) 11 11 e(2528)e\left(\frac{25}{28}\right) e(1114)e\left(\frac{11}{14}\right) e(2984)e\left(\frac{29}{84}\right) e(1928)e\left(\frac{19}{28}\right) e(521)e\left(\frac{5}{21}\right) e(584)e\left(\frac{5}{84}\right) e(47)e\left(\frac{4}{7}\right) e(57)e\left(\frac{5}{7}\right) e(712)e\left(\frac{7}{12}\right) e(1184)e\left(\frac{11}{84}\right)
χ5733(5185,)\chi_{5733}(5185,\cdot) 11 11 e(2328)e\left(\frac{23}{28}\right) e(914)e\left(\frac{9}{14}\right) e(1184)e\left(\frac{11}{84}\right) e(1328)e\left(\frac{13}{28}\right) e(2021)e\left(\frac{20}{21}\right) e(8384)e\left(\frac{83}{84}\right) e(27)e\left(\frac{2}{7}\right) e(67)e\left(\frac{6}{7}\right) e(112)e\left(\frac{1}{12}\right) e(6584)e\left(\frac{65}{84}\right)
χ5733(5428,)\chi_{5733}(5428,\cdot) 11 11 e(1928)e\left(\frac{19}{28}\right) e(514)e\left(\frac{5}{14}\right) e(3184)e\left(\frac{31}{84}\right) e(128)e\left(\frac{1}{28}\right) e(121)e\left(\frac{1}{21}\right) e(4384)e\left(\frac{43}{84}\right) e(57)e\left(\frac{5}{7}\right) e(17)e\left(\frac{1}{7}\right) e(512)e\left(\frac{5}{12}\right) e(6184)e\left(\frac{61}{84}\right)