from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(5733, base_ring=CyclotomicField(84))
M = H._module
chi = DirichletCharacter(H, M([0,34,7]))
pari: [g,chi] = znchar(Mod(4240,5733))
χ5733(136,⋅)
χ5733(145,⋅)
χ5733(271,⋅)
χ5733(514,⋅)
χ5733(955,⋅)
χ5733(964,⋅)
χ5733(1090,⋅)
χ5733(1333,⋅)
χ5733(1774,⋅)
χ5733(1909,⋅)
χ5733(2152,⋅)
χ5733(2593,⋅)
χ5733(2602,⋅)
χ5733(2728,⋅)
χ5733(3421,⋅)
χ5733(3790,⋅)
χ5733(4231,⋅)
χ5733(4240,⋅)
χ5733(4366,⋅)
χ5733(4609,⋅)
χ5733(5050,⋅)
χ5733(5059,⋅)
χ5733(5185,⋅)
χ5733(5428,⋅)
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(2549,1522,5293) → (1,e(4217),e(121))
a |
−1 | 1 | 2 | 4 | 5 | 8 | 10 | 11 | 16 | 17 | 19 | 20 |
χ5733(4240,a) |
1 | 1 | e(2817) | e(143) | e(8441) | e(2823) | e(212) | e(8465) | e(73) | e(72) | e(127) | e(8459) |