Properties

Label 5850.1141
Modulus 58505850
Conductor 29252925
Order 3030
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5850, base_ring=CyclotomicField(30))
 
M = H._module
 
chi = DirichletCharacter(H, M([20,6,25]))
 
pari: [g,chi] = znchar(Mod(1141,5850))
 

Basic properties

Modulus: 58505850
Conductor: 29252925
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 3030
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ2925(1141,)\chi_{2925}(1141,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 5850.fr

χ5850(121,)\chi_{5850}(121,\cdot) χ5850(1141,)\chi_{5850}(1141,\cdot) χ5850(1291,)\chi_{5850}(1291,\cdot) χ5850(2311,)\chi_{5850}(2311,\cdot) χ5850(2461,)\chi_{5850}(2461,\cdot) χ5850(3481,)\chi_{5850}(3481,\cdot) χ5850(3631,)\chi_{5850}(3631,\cdot) χ5850(5821,)\chi_{5850}(5821,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ15)\Q(\zeta_{15})
Fixed field: Number field defined by a degree 30 polynomial

Values on generators

(3251,3277,2251)(3251,3277,2251)(e(23),e(15),e(56))(e\left(\frac{2}{3}\right),e\left(\frac{1}{5}\right),e\left(\frac{5}{6}\right))

First values

aa 1-11177111117171919232329293131373741414343
χ5850(1141,a) \chi_{ 5850 }(1141, a) 1111e(56)e\left(\frac{5}{6}\right)e(710)e\left(\frac{7}{10}\right)e(415)e\left(\frac{4}{15}\right)e(2330)e\left(\frac{23}{30}\right)e(1315)e\left(\frac{13}{15}\right)e(25)e\left(\frac{2}{5}\right)e(1330)e\left(\frac{13}{30}\right)e(1930)e\left(\frac{19}{30}\right)e(2930)e\left(\frac{29}{30}\right)e(13)e\left(\frac{1}{3}\right)
sage: chi.jacobi_sum(n)
 
χ5850(1141,a)   \chi_{ 5850 }(1141,a) \; at   a=\;a = e.g. 2