Properties

Label 5850.2461
Modulus $5850$
Conductor $2925$
Order $30$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5850, base_ring=CyclotomicField(30))
 
M = H._module
 
chi = DirichletCharacter(H, M([10,24,5]))
 
pari: [g,chi] = znchar(Mod(2461,5850))
 

Basic properties

Modulus: \(5850\)
Conductor: \(2925\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(30\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{2925}(2461,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 5850.fr

\(\chi_{5850}(121,\cdot)\) \(\chi_{5850}(1141,\cdot)\) \(\chi_{5850}(1291,\cdot)\) \(\chi_{5850}(2311,\cdot)\) \(\chi_{5850}(2461,\cdot)\) \(\chi_{5850}(3481,\cdot)\) \(\chi_{5850}(3631,\cdot)\) \(\chi_{5850}(5821,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{15})\)
Fixed field: Number field defined by a degree 30 polynomial

Values on generators

\((3251,3277,2251)\) → \((e\left(\frac{1}{3}\right),e\left(\frac{4}{5}\right),e\left(\frac{1}{6}\right))\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 5850 }(2461, a) \) \(1\)\(1\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{3}{10}\right)\)\(e\left(\frac{11}{15}\right)\)\(e\left(\frac{7}{30}\right)\)\(e\left(\frac{2}{15}\right)\)\(e\left(\frac{3}{5}\right)\)\(e\left(\frac{17}{30}\right)\)\(e\left(\frac{11}{30}\right)\)\(e\left(\frac{1}{30}\right)\)\(e\left(\frac{2}{3}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 5850 }(2461,a) \;\) at \(\;a = \) e.g. 2