Properties

Label 629.28
Modulus $629$
Conductor $629$
Order $144$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(629, base_ring=CyclotomicField(144))
 
M = H._module
 
chi = DirichletCharacter(H, M([63,136]))
 
pari: [g,chi] = znchar(Mod(28,629))
 

Basic properties

Modulus: \(629\)
Conductor: \(629\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(144\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 629.cb

\(\chi_{629}(3,\cdot)\) \(\chi_{629}(28,\cdot)\) \(\chi_{629}(40,\cdot)\) \(\chi_{629}(41,\cdot)\) \(\chi_{629}(58,\cdot)\) \(\chi_{629}(62,\cdot)\) \(\chi_{629}(65,\cdot)\) \(\chi_{629}(78,\cdot)\) \(\chi_{629}(95,\cdot)\) \(\chi_{629}(99,\cdot)\) \(\chi_{629}(114,\cdot)\) \(\chi_{629}(139,\cdot)\) \(\chi_{629}(141,\cdot)\) \(\chi_{629}(173,\cdot)\) \(\chi_{629}(176,\cdot)\) \(\chi_{629}(210,\cdot)\) \(\chi_{629}(215,\cdot)\) \(\chi_{629}(226,\cdot)\) \(\chi_{629}(243,\cdot)\) \(\chi_{629}(250,\cdot)\) \(\chi_{629}(252,\cdot)\) \(\chi_{629}(262,\cdot)\) \(\chi_{629}(284,\cdot)\) \(\chi_{629}(299,\cdot)\) \(\chi_{629}(300,\cdot)\) \(\chi_{629}(317,\cdot)\) \(\chi_{629}(326,\cdot)\) \(\chi_{629}(337,\cdot)\) \(\chi_{629}(354,\cdot)\) \(\chi_{629}(363,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{144})$
Fixed field: Number field defined by a degree 144 polynomial (not computed)

Values on generators

\((445,409)\) → \((e\left(\frac{7}{16}\right),e\left(\frac{17}{18}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(7\)\(8\)\(9\)\(10\)\(11\)
\( \chi_{ 629 }(28, a) \) \(-1\)\(1\)\(e\left(\frac{5}{72}\right)\)\(e\left(\frac{143}{144}\right)\)\(e\left(\frac{5}{36}\right)\)\(e\left(\frac{131}{144}\right)\)\(e\left(\frac{1}{16}\right)\)\(e\left(\frac{5}{144}\right)\)\(e\left(\frac{5}{24}\right)\)\(e\left(\frac{71}{72}\right)\)\(e\left(\frac{47}{48}\right)\)\(e\left(\frac{19}{48}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 629 }(28,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 629 }(28,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 629 }(28,·),\chi_{ 629 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 629 }(28,·)) \;\) at \(\; a,b = \) e.g. 1,2