Properties

Label 629.354
Modulus 629629
Conductor 629629
Order 144144
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(629, base_ring=CyclotomicField(144)) M = H._module chi = DirichletCharacter(H, M([81,88]))
 
Copy content pari:[g,chi] = znchar(Mod(354,629))
 

Basic properties

Modulus: 629629
Conductor: 629629
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: 144144
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 629.cb

χ629(3,)\chi_{629}(3,\cdot) χ629(28,)\chi_{629}(28,\cdot) χ629(40,)\chi_{629}(40,\cdot) χ629(41,)\chi_{629}(41,\cdot) χ629(58,)\chi_{629}(58,\cdot) χ629(62,)\chi_{629}(62,\cdot) χ629(65,)\chi_{629}(65,\cdot) χ629(78,)\chi_{629}(78,\cdot) χ629(95,)\chi_{629}(95,\cdot) χ629(99,)\chi_{629}(99,\cdot) χ629(114,)\chi_{629}(114,\cdot) χ629(139,)\chi_{629}(139,\cdot) χ629(141,)\chi_{629}(141,\cdot) χ629(173,)\chi_{629}(173,\cdot) χ629(176,)\chi_{629}(176,\cdot) χ629(210,)\chi_{629}(210,\cdot) χ629(215,)\chi_{629}(215,\cdot) χ629(226,)\chi_{629}(226,\cdot) χ629(243,)\chi_{629}(243,\cdot) χ629(250,)\chi_{629}(250,\cdot) χ629(252,)\chi_{629}(252,\cdot) χ629(262,)\chi_{629}(262,\cdot) χ629(284,)\chi_{629}(284,\cdot) χ629(299,)\chi_{629}(299,\cdot) χ629(300,)\chi_{629}(300,\cdot) χ629(317,)\chi_{629}(317,\cdot) χ629(326,)\chi_{629}(326,\cdot) χ629(337,)\chi_{629}(337,\cdot) χ629(354,)\chi_{629}(354,\cdot) χ629(363,)\chi_{629}(363,\cdot) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ144)\Q(\zeta_{144})
Fixed field: Number field defined by a degree 144 polynomial (not computed)

Values on generators

(445,409)(445,409)(e(916),e(1118))(e\left(\frac{9}{16}\right),e\left(\frac{11}{18}\right))

First values

aa 1-111223344556677889910101111
χ629(354,a) \chi_{ 629 }(354, a) 1-111e(3572)e\left(\frac{35}{72}\right)e(65144)e\left(\frac{65}{144}\right)e(3536)e\left(\frac{35}{36}\right)e(125144)e\left(\frac{125}{144}\right)e(1516)e\left(\frac{15}{16}\right)e(107144)e\left(\frac{107}{144}\right)e(1124)e\left(\frac{11}{24}\right)e(6572)e\left(\frac{65}{72}\right)e(1748)e\left(\frac{17}{48}\right)e(1348)e\left(\frac{13}{48}\right)
Copy content sage:chi.jacobi_sum(n)
 
χ629(354,a)   \chi_{ 629 }(354,a) \; at   a=\;a = e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
τa(χ629(354,))   \tau_{ a }( \chi_{ 629 }(354,·) )\; at   a=\;a = e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
J(χ629(354,),χ629(n,))   J(\chi_{ 629 }(354,·),\chi_{ 629 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
K(a,b,χ629(354,))  K(a,b,\chi_{ 629 }(354,·)) \; at   a,b=\; a,b = e.g. 1,2