sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(629, base_ring=CyclotomicField(144))
M = H._module
chi = DirichletCharacter(H, M([81,88]))
pari:[g,chi] = znchar(Mod(354,629))
Modulus: | 629 | |
Conductor: | 629 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 144 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ629(3,⋅)
χ629(28,⋅)
χ629(40,⋅)
χ629(41,⋅)
χ629(58,⋅)
χ629(62,⋅)
χ629(65,⋅)
χ629(78,⋅)
χ629(95,⋅)
χ629(99,⋅)
χ629(114,⋅)
χ629(139,⋅)
χ629(141,⋅)
χ629(173,⋅)
χ629(176,⋅)
χ629(210,⋅)
χ629(215,⋅)
χ629(226,⋅)
χ629(243,⋅)
χ629(250,⋅)
χ629(252,⋅)
χ629(262,⋅)
χ629(284,⋅)
χ629(299,⋅)
χ629(300,⋅)
χ629(317,⋅)
χ629(326,⋅)
χ629(337,⋅)
χ629(354,⋅)
χ629(363,⋅)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(445,409) → (e(169),e(1811))
a |
−1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
χ629(354,a) |
−1 | 1 | e(7235) | e(14465) | e(3635) | e(144125) | e(1615) | e(144107) | e(2411) | e(7265) | e(4817) | e(4813) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)