Properties

Label 6384.3091
Modulus $6384$
Conductor $2128$
Order $36$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6384, base_ring=CyclotomicField(36))
 
M = H._module
 
chi = DirichletCharacter(H, M([18,27,0,24,10]))
 
pari: [g,chi] = znchar(Mod(3091,6384))
 

Basic properties

Modulus: \(6384\)
Conductor: \(2128\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(36\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{2128}(963,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 6384.np

\(\chi_{6384}(67,\cdot)\) \(\chi_{6384}(667,\cdot)\) \(\chi_{6384}(1675,\cdot)\) \(\chi_{6384}(1915,\cdot)\) \(\chi_{6384}(3091,\cdot)\) \(\chi_{6384}(3187,\cdot)\) \(\chi_{6384}(3259,\cdot)\) \(\chi_{6384}(3859,\cdot)\) \(\chi_{6384}(4867,\cdot)\) \(\chi_{6384}(5107,\cdot)\) \(\chi_{6384}(6283,\cdot)\) \(\chi_{6384}(6379,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{36})\)
Fixed field: Number field defined by a degree 36 polynomial

Values on generators

\((799,4789,2129,913,1009)\) → \((-1,-i,1,e\left(\frac{2}{3}\right),e\left(\frac{5}{18}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(11\)\(13\)\(17\)\(23\)\(25\)\(29\)\(31\)\(37\)\(41\)
\( \chi_{ 6384 }(3091, a) \) \(1\)\(1\)\(e\left(\frac{19}{36}\right)\)\(i\)\(e\left(\frac{23}{36}\right)\)\(e\left(\frac{4}{9}\right)\)\(e\left(\frac{8}{9}\right)\)\(e\left(\frac{1}{18}\right)\)\(e\left(\frac{35}{36}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{7}{12}\right)\)\(e\left(\frac{1}{9}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 6384 }(3091,a) \;\) at \(\;a = \) e.g. 2